PlatYi-34B-200K-Q
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
PlatYi-34B-200K-Q is an auto-regressive language model based on the Yi-34B transformer architecture.
Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]
Base Model
01-ai/Yi-34B-200K
Training Dataset
garage-bAInd/Open-Platypus.
Notice
While training, I used QLoRA.
But, lora_r
values is 64.
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
PlatYi-34B-200K-Q | 62.00 | 63.91 | 83.52 | 75.19 | 44.21 | 81.06 | 24.11 |
PlatYi-34B-Q | 69.86 | 66.89 | 85.14 | 77.66 | 53.03 | 82.48 | 53.98 |
01-ai/Yi-34B | 69.42 | 64.59 | 85.69 | 76.35 | 56.23 | 83.03 | 50.64 |
01-ai/Yi-34B-200K | 70.81 | 65.36 | 85.58 | 76.06 | 53.64 | 82.56 | 61.64 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/PlatYi-34B-200K-Q"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 62.00 |
AI2 Reasoning Challenge (25-Shot) | 63.91 |
HellaSwag (10-Shot) | 83.52 |
MMLU (5-Shot) | 75.19 |
TruthfulQA (0-shot) | 44.21 |
Winogrande (5-shot) | 81.06 |
GSM8k (5-shot) | 24.11 |
- Downloads last month
- 976
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for kyujinpy/PlatYi-34B-200K-Q
Dataset used to train kyujinpy/PlatYi-34B-200K-Q
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard63.910
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard83.520
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard75.190
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard44.210
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard81.060
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard24.110