Kosy🍵llama
Model Details
Model Developers Kyujin Han (kyujinpy)
Model Description
NEFTune method를 활용하여 훈련한 Ko-platypus2 new version!
(Noisy + KO + llama = Kosy🍵llama)
Repo Link
Github KoNEFTune: Kosy🍵llama
If you visit our github, you can easily apply Random_noisy_embedding_fine-tuning!!
Base Model
hyunseoki/ko-en-llama2-13b
Training Dataset
Version of combined dataset: kyujinpy/KOpen-platypus
I use A100 GPU 40GB and COLAB, when trianing.
Model comparisons
NEFT comparisons
Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|---|
Ko-Platypus2-13B | 45.60 | 44.20 | 54.31 | 42.47 | 44.41 | 42.62 |
*NEFT(🍵kosy)+MLP-v1 | 43.64 | 43.94 | 53.88 | 42.68 | 43.46 | 34.24 |
*NEFT(🍵kosy)+MLP-v2 | 45.45 | 44.20 | 54.56 | 42.60 | 42.68 | 42.98 |
*NEFT(🍵kosy)+MLP-v3 | 46.31 | 43.34 | 54.54 | 43.38 | 44.11 | 46.16 |
NEFT(🍵kosy)+Attention | 44.92 | 42.92 | 54.48 | 42.99 | 43.00 | 41.20 |
NEFT(🍵kosy) | 45.08 | 43.09 | 53.61 | 41.06 | 43.47 | 43.21 |
*Different Hyperparameters such that learning_rate, batch_size, epoch, etc...
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Koisy-Platypus2-13B"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
- Downloads last month
- 1,709
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.