Edit model card

Arousal-wav2vec2-base-EMOPIA

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4207
  • Accuracy: 0.9014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 3
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6871 1.0 269 0.6601 0.6761
0.6071 2.0 538 0.5375 0.8451
0.4312 3.0 807 0.3544 0.8873
0.306 4.0 1076 0.3780 0.8592
0.3052 5.0 1345 0.4133 0.8873
0.3099 6.0 1614 0.4112 0.8873
0.2965 7.0 1883 0.4241 0.8873
0.2954 8.0 2152 0.4381 0.8873
0.2905 9.0 2421 0.4294 0.9014
0.2868 10.0 2690 0.4208 0.9014
0.284 11.0 2959 0.4077 0.9014
0.2666 12.0 3228 0.4149 0.9014
0.2697 13.0 3497 0.4108 0.9014
0.2622 14.0 3766 0.4187 0.9014
0.2648 15.0 4035 0.4207 0.9014

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
1
Safetensors
Model size
95M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kurosekurose/Arousal-wav2vec2-base-EMOPIA

Finetuned
(661)
this model