Back to all models
question-answering mask_token: [MASK]
Context
Query this model
馃敟 This model is currently loaded and running on the Inference API. 鈿狅笍 This model could not be loaded by the inference API. 鈿狅笍 This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

鈿★笍 Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

ktrapeznikov/biobert_v1.1_pubmed_squad_v2 ktrapeznikov/biobert_v1.1_pubmed_squad_v2
1,286 downloads
last 30 days

pytorch

tf

Contributed by

ktrapeznikov Kirill Trapeznikov
3 models

How to use this model directly from the 馃/transformers library:

			
Copy to clipboard
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("ktrapeznikov/biobert_v1.1_pubmed_squad_v2") model = AutoModelForQuestionAnswering.from_pretrained("ktrapeznikov/biobert_v1.1_pubmed_squad_v2")

Model

monologg/biobert_v1.1_pubmed fine-tuned on SQuAD V2 using run_squad.py

This model is cased.

Training Parameters

Trained on 4 NVIDIA GeForce RTX 2080 Ti 11Gb

BASE_MODEL=monologg/biobert_v1.1_pubmed
python run_squad.py \
  --version_2_with_negative \
  --model_type albert \
  --model_name_or_path $BASE_MODEL \
  --output_dir $OUTPUT_MODEL \
  --do_eval \
  --do_lower_case \
  --train_file $SQUAD_DIR/train-v2.0.json \
  --predict_file $SQUAD_DIR/dev-v2.0.json \
  --per_gpu_train_batch_size 18 \
  --per_gpu_eval_batch_size 64 \
  --learning_rate 3e-5 \
  --num_train_epochs 3.0 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --save_steps 2000 \
  --threads 24 \
  --warmup_steps 550 \
  --gradient_accumulation_steps 1 \
  --fp16 \
  --logging_steps 50 \
  --do_train

Evaluation

Evaluation on the dev set. I did not sweep for best threshold.

val
exact 75.97068980038743
f1 79.37043950121722
total 11873.0
HasAns_exact 74.13967611336032
HasAns_f1 80.94892513460755
HasAns_total 5928.0
NoAns_exact 77.79646761984861
NoAns_f1 77.79646761984861
NoAns_total 5945.0
best_exact 75.97068980038743
best_exact_thresh 0.0
best_f1 79.37043950121729
best_f1_thresh 0.0

Usage

See huggingface documentation. Training on SQuAD V2 allows the model to score if a paragraph contains an answer:

start_scores, end_scores = model(input_ids) 
span_scores = start_scores.softmax(dim=1).log()[:,:,None] + end_scores.softmax(dim=1).log()[:,None,:]
ignore_score = span_scores[:,0,0] #no answer scores