review_classification_bert_base_jp_v3_ratio1_10_2label_add_dropout-epoch30_v4

This model is a fine-tuned version of cl-tohoku/bert-base-japanese-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0927
  • Accuracy: 0.9003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 286 0.2417 0.9075
0.2411 2.0 572 0.2688 0.9131
0.2411 3.0 858 0.3000 0.9126
0.1763 4.0 1144 0.3900 0.8768
0.1763 5.0 1430 0.5771 0.8952
0.0758 6.0 1716 0.7230 0.8921
0.0273 7.0 2002 0.7799 0.8799
0.0273 8.0 2288 0.8761 0.8911
0.0046 9.0 2574 1.0195 0.8742
0.0046 10.0 2860 0.9275 0.8952
0.0078 11.0 3146 0.9748 0.8906
0.0078 12.0 3432 0.9619 0.8988
0.0057 13.0 3718 1.0354 0.8865
0.0038 14.0 4004 1.1006 0.8747
0.0038 15.0 4290 0.9827 0.8998
0.0016 16.0 4576 1.0556 0.8891
0.0016 17.0 4862 1.1509 0.8793
0.0027 18.0 5148 1.2724 0.8630
0.0027 19.0 5434 1.0569 0.8931
0.0041 20.0 5720 1.1100 0.8911
0.0022 21.0 6006 1.0499 0.9024
0.0022 22.0 6292 1.0498 0.9054
0.0017 23.0 6578 1.1034 0.8937
0.0017 24.0 6864 1.0687 0.9024
0.0005 25.0 7150 1.0940 0.8972
0.0005 26.0 7436 1.0940 0.8978
0.0003 27.0 7722 1.0938 0.8993
0.0007 28.0 8008 1.1729 0.8885
0.0007 29.0 8294 1.0835 0.9024
0.0014 30.0 8580 1.0927 0.9003

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kt220/review_classification_bert_base_jp_v3_ratio1_10_2label_add_dropout-epoch30_v4

Finetuned
(33)
this model