πŸ“ˆ Financial Korean ELECTRA model

Pretrained ELECTRA Language Model for Korean (finance-koelectra-base-generator)

ELECTRA is a new method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN.

More details about ELECTRA can be found in the ICLR paper or in the official ELECTRA repository on GitHub.

Stats

The current version of the model is trained on a financial news data of Naver news.

The final training corpus has a size of 25GB and 2.3B tokens.

This model was trained a cased model on a TITAN RTX for 500k steps.

Usage

from transformers import pipeline

fill_mask = pipeline(
            "fill-mask",
            model="krevas/finance-koelectra-base-generator",
            tokenizer="krevas/finance-koelectra-base-generator"
            )

print(fill_mask(f"내일 ν•΄λ‹Ή μ’…λͺ©μ΄ λŒ€ν­ {fill_mask.tokenizer.mask_token}ν•  것이닀."))

Huggingface model hub

All models are available on the Huggingface model hub.

Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.