BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("korruz/bge-base-financial-matryoshka")
# Run inference
sentences = [
'We use raw materials that are subject to price volatility caused by weather, supply conditions, political and economic variables and other unpredictable factors. We may use futures, options and swap contracts to manage the volatility related to the above exposures.',
'What financial instruments does the company use to manage commodity price exposure?',
'What types of legal proceedings is the company currently involved in?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6814 |
cosine_accuracy@3 | 0.82 |
cosine_accuracy@5 | 0.8614 |
cosine_accuracy@10 | 0.8943 |
cosine_precision@1 | 0.6814 |
cosine_precision@3 | 0.2733 |
cosine_precision@5 | 0.1723 |
cosine_precision@10 | 0.0894 |
cosine_recall@1 | 0.6814 |
cosine_recall@3 | 0.82 |
cosine_recall@5 | 0.8614 |
cosine_recall@10 | 0.8943 |
cosine_ndcg@10 | 0.7922 |
cosine_mrr@10 | 0.759 |
cosine_map@100 | 0.7633 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.68 |
cosine_accuracy@3 | 0.8214 |
cosine_accuracy@5 | 0.8614 |
cosine_accuracy@10 | 0.8957 |
cosine_precision@1 | 0.68 |
cosine_precision@3 | 0.2738 |
cosine_precision@5 | 0.1723 |
cosine_precision@10 | 0.0896 |
cosine_recall@1 | 0.68 |
cosine_recall@3 | 0.8214 |
cosine_recall@5 | 0.8614 |
cosine_recall@10 | 0.8957 |
cosine_ndcg@10 | 0.7914 |
cosine_mrr@10 | 0.7576 |
cosine_map@100 | 0.7617 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.69 |
cosine_accuracy@3 | 0.8271 |
cosine_accuracy@5 | 0.8571 |
cosine_accuracy@10 | 0.8929 |
cosine_precision@1 | 0.69 |
cosine_precision@3 | 0.2757 |
cosine_precision@5 | 0.1714 |
cosine_precision@10 | 0.0893 |
cosine_recall@1 | 0.69 |
cosine_recall@3 | 0.8271 |
cosine_recall@5 | 0.8571 |
cosine_recall@10 | 0.8929 |
cosine_ndcg@10 | 0.7943 |
cosine_mrr@10 | 0.7624 |
cosine_map@100 | 0.7662 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6657 |
cosine_accuracy@3 | 0.8043 |
cosine_accuracy@5 | 0.8457 |
cosine_accuracy@10 | 0.8871 |
cosine_precision@1 | 0.6657 |
cosine_precision@3 | 0.2681 |
cosine_precision@5 | 0.1691 |
cosine_precision@10 | 0.0887 |
cosine_recall@1 | 0.6657 |
cosine_recall@3 | 0.8043 |
cosine_recall@5 | 0.8457 |
cosine_recall@10 | 0.8871 |
cosine_ndcg@10 | 0.7784 |
cosine_mrr@10 | 0.7434 |
cosine_map@100 | 0.7475 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6343 |
cosine_accuracy@3 | 0.7771 |
cosine_accuracy@5 | 0.8157 |
cosine_accuracy@10 | 0.8643 |
cosine_precision@1 | 0.6343 |
cosine_precision@3 | 0.259 |
cosine_precision@5 | 0.1631 |
cosine_precision@10 | 0.0864 |
cosine_recall@1 | 0.6343 |
cosine_recall@3 | 0.7771 |
cosine_recall@5 | 0.8157 |
cosine_recall@10 | 0.8643 |
cosine_ndcg@10 | 0.7508 |
cosine_mrr@10 | 0.7143 |
cosine_map@100 | 0.7189 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 8 tokens
- mean: 45.15 tokens
- max: 281 tokens
- min: 7 tokens
- mean: 20.65 tokens
- max: 42 tokens
- Samples:
positive anchor The sale and donation transactions closed in June 2022. Total proceeds from the sale were approximately $6,300 (net of transaction and closing costs), resulting in a loss of $13,568, which was recorded in the SM&A expense caption within the Consolidated Statements of Income.
What were Hershey's total proceeds from the sale of a building portion in June 2022, and what was the resulting financial impact?
Operating income margin increased to 7.9% in fiscal 2022 compared to 6.9% in fiscal 2021.
What was the operating income margin for fiscal year 2022 compared to fiscal year 2021?
iPhone® is the Company’s line of smartphones based on its iOS operating system. The iPhone line includes iPhone 15 Pro, iPhone 15, iPhone 14, iPhone 13 and iPhone SE®.
What operating system is used for the Company's iPhone line?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.9697 | 6 | - | 0.7248 | 0.7459 | 0.7534 | 0.6859 | 0.7549 |
1.6162 | 10 | 2.3046 | - | - | - | - | - |
1.9394 | 12 | - | 0.7456 | 0.7601 | 0.7590 | 0.7111 | 0.7599 |
2.9091 | 18 | - | 0.7470 | 0.7652 | 0.7618 | 0.7165 | 0.7622 |
3.2323 | 20 | 1.0018 | - | - | - | - | - |
3.8788 | 24 | - | 0.7475 | 0.7662 | 0.7617 | 0.7189 | 0.7633 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for korruz/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.681
- Cosine Accuracy@3 on dim 768self-reported0.820
- Cosine Accuracy@5 on dim 768self-reported0.861
- Cosine Accuracy@10 on dim 768self-reported0.894
- Cosine Precision@1 on dim 768self-reported0.681
- Cosine Precision@3 on dim 768self-reported0.273
- Cosine Precision@5 on dim 768self-reported0.172
- Cosine Precision@10 on dim 768self-reported0.089
- Cosine Recall@1 on dim 768self-reported0.681
- Cosine Recall@3 on dim 768self-reported0.820