Solar based model with gradient slerp

This is an English mixed Model based on

  • [DopeorNope/SOLARC-M-10.7B]
  • [kyujinpy/Sakura-SOLRCA-Math-Instruct-DPO-v2]

gpu code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "kodonho/SolarM-SakuraSolar-SLERP"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")

CPU example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "kodonho/SolarM-SakuraSolar-SLERP"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
        model_path, torch_dtype=torch.bfloat16, device_map='cpu'
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")
Downloads last month
3,515
Safetensors
Model size
10.7B params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for kodonho/SolarM-SakuraSolar-SLERP

Quantizations
1 model

Spaces using kodonho/SolarM-SakuraSolar-SLERP 13