Edit model card

beit-sketch-classifier

This model is a version of microsoft/beit-base-patch16-224-pt22k-ft22k fine-tuned on a dataset of Quick!Draw! sketches (~10% of QuickDraw's 50M sketches). It achieves the following results on the evaluation set:

  • Loss: 0.7372
  • Accuracy: 0.8098

Intended uses & limitations

It's intended to be used to classifier sketches with a line-segment input format (there's no data augmentation in the fine-tuning; the input raster images ideally need to be generated from line-vector format very similarly to the training images).

You can generate the requisite PIL images from Quickdraw bin format with the following:

# packed bytes -> dict (fro mhttps://github.com/googlecreativelab/quickdraw-dataset/blob/master/examples/binary_file_parser.py)
def unpack_drawing(file_handle):
    key_id, = unpack('Q', file_handle.read(8))
    country_code, = unpack('2s', file_handle.read(2))
    recognized, = unpack('b', file_handle.read(1))
    timestamp, = unpack('I', file_handle.read(4))
    n_strokes, = unpack('H', file_handle.read(2))
    image = []
    n_bytes = 17
    for i in range(n_strokes):
        n_points, = unpack('H', file_handle.read(2))
        fmt = str(n_points) + 'B'
        x = unpack(fmt, file_handle.read(n_points))
        y = unpack(fmt, file_handle.read(n_points))
        image.append((x, y))
        n_bytes += 2 + 2*n_points
    result = {
        'key_id': key_id,
        'country_code': country_code,
        'recognized': recognized,
        'timestamp': timestamp,
        'image': image,
    }
    return result

# packed bin -> RGB PIL
def binToPIL(packed_drawing):
    padding = 8
    radius = 7
    scale = (224.0-(2*padding)) / 256
    
    unpacked = unpack_drawing(io.BytesIO(packed_drawing))
    unpacked_image = unpacked['image']
    image = np.full((224,224), 255, np.uint8)
    for stroke in unpacked['image']:
        prevX = round(stroke[0][0]*scale)
        prevY = round(stroke[1][0]*scale)
        for i in range(1, len(stroke[0])):
            x = round(stroke[0][i]*scale)
            y = round(stroke[1][i]*scale)
            cv2.line(image, (padding+prevX, padding+prevY), (padding+x, padding+y), 0, radius, -1)
            prevX = x
            prevY = y
    pilImage = Image.fromarray(image).convert("RGB")     
    return pilImage

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Accuracy Validation Loss
0.939 1.0 12606 0.7853 0.8275
0.7312 2.0 25212 0.7587 0.8027
0.6174 3.0 37818 0.7372 0.8098

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.