beit-sketch-classifier
This model is a version of microsoft/beit-base-patch16-224-pt22k-ft22k fine-tuned on a dataset of Quick!Draw! sketches (~10% of QuickDraw's 50M sketches). It achieves the following results on the evaluation set:
- Loss: 0.7372
- Accuracy: 0.8098
Intended uses & limitations
It's intended to be used to classifier sketches with a line-segment input format (there's no data augmentation in the fine-tuning; the input raster images ideally need to be generated from line-vector format very similarly to the training images).
You can generate the requisite PIL images from Quickdraw bin
format with the following:
# packed bytes -> dict (fro mhttps://github.com/googlecreativelab/quickdraw-dataset/blob/master/examples/binary_file_parser.py)
def unpack_drawing(file_handle):
key_id, = unpack('Q', file_handle.read(8))
country_code, = unpack('2s', file_handle.read(2))
recognized, = unpack('b', file_handle.read(1))
timestamp, = unpack('I', file_handle.read(4))
n_strokes, = unpack('H', file_handle.read(2))
image = []
n_bytes = 17
for i in range(n_strokes):
n_points, = unpack('H', file_handle.read(2))
fmt = str(n_points) + 'B'
x = unpack(fmt, file_handle.read(n_points))
y = unpack(fmt, file_handle.read(n_points))
image.append((x, y))
n_bytes += 2 + 2*n_points
result = {
'key_id': key_id,
'country_code': country_code,
'recognized': recognized,
'timestamp': timestamp,
'image': image,
}
return result
# packed bin -> RGB PIL
def binToPIL(packed_drawing):
padding = 8
radius = 7
scale = (224.0-(2*padding)) / 256
unpacked = unpack_drawing(io.BytesIO(packed_drawing))
unpacked_image = unpacked['image']
image = np.full((224,224), 255, np.uint8)
for stroke in unpacked['image']:
prevX = round(stroke[0][0]*scale)
prevY = round(stroke[1][0]*scale)
for i in range(1, len(stroke[0])):
x = round(stroke[0][i]*scale)
y = round(stroke[1][i]*scale)
cv2.line(image, (padding+prevX, padding+prevY), (padding+x, padding+y), 0, radius, -1)
prevX = x
prevY = y
pilImage = Image.fromarray(image).convert("RGB")
return pilImage
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
0.939 | 1.0 | 12606 | 0.7853 | 0.8275 |
0.7312 | 2.0 | 25212 | 0.7587 | 0.8027 |
0.6174 | 3.0 | 37818 | 0.7372 | 0.8098 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.