kishizaki-sci's picture
Update README.md
c488176 verified
|
raw
history blame
2.56 kB
---
license: mit
base_model:
- meta-llama/Llama-3.3-70B-Instruct
---
# kishizaki-sci/Llama-3.3-70B-Instruct-AWQ-4bit-JP-EN
## モデル情報
[Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)を[AutoAWQ](https://github.com/casper-hansen/AutoAWQ)で4bit 量子化したモデル。量子化の際のキャリブレーションデータに日本語と英語を含むデータを使用。
## 使い方
### transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("kishizaki-sci/Llama-3.3-70B-Instruct-AWQ-4bit-JP-EN")
model = AutoModelForCausalLM.from_pretrained("kishizaki-sci/Llama-3.3-70B-Instruct-AWQ-4bit-JP-EN")
model.to("cuda")
chat = [
{"role": "system", "content": "あなたは日本語で応答するAIチャットボットです。ユーザをサポートしてください。"},
{"role": "user", "content": "plotly.graph_objectsを使って散布図を作るサンプルコードを書いてください。"}
]
prompt = tokenizer.apply_chat_template(
chat,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt")
inputs = inputs.to("cuda")
streamer = TextStreamer(tokenizer)
output = model.generate(**inputs, streamer=streamer, max_new_tokens=1024)
```
このコードはA100インスタンスの[Google Colab](https://colab.research.google.com/drive/1NSWV6MMisTlN5ELN42VPMLRH9ahAfNrJ?usp=sharing) でも動かせます。
### vLLM
```python
```
## キャリブレーションデータ
以下のデータセットから512個のデータ,プロンプトを抽出。1つのデータのトークン数は最大350制限。
- [TFMC/imatrix-dataset-for-japanese-llm](https://huggingface.co/datasets/TFMC/imatrix-dataset-for-japanese-llm)
- [meta-math/MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
- [m-a-p/CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction)
- [kunishou/databricks-dolly-15k-ja](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
- その他日本語版・英語版のwikipedia記事から作成したオリジナルデータ,有害プロンプト回避のためのオリジナルデータを使用。 
## License
[MIT License]を適用する。ただし量子化のベースモデルに適用されている[Llama 3.3 Community License Agreement](https://github.com/meta-llama/llama-models/blob/main/models/llama3_3/LICENSE)を遵守すること。