chatgpt-gpt4-prompts-bart-large-cnn-samsum

This model generates ChatGPT/BingChat & GPT-3 prompts and is a fine-tuned version of philschmid/bart-large-cnn-samsum on an this dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.2214
  • Validation Loss: 2.7584
  • Epoch: 4

Streamlit

This model supports a Streamlit Web UI to run the chatgpt-gpt4-prompts-bart-large-cnn-samsum model: Open In HF Spaces

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
3.1982 2.6801 0
2.3601 2.5493 1
1.9225 2.5377 2
1.5465 2.6794 3
1.2214 2.7584 4

Framework versions

  • Transformers 4.27.3
  • TensorFlow 2.11.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train kimi0230/TestModel