File size: 1,769 Bytes
a56a1c8 96d75a1 a56a1c8 96d75a1 a56a1c8 96d75a1 a56a1c8 96d75a1 a56a1c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
tags:
- generated_from_trainer
datasets:
- c4
metrics:
- accuracy
model-index:
- name: longformer-predicted-pos-encodings-4096-2L
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: c4 en
type: c4
args: en
metrics:
- name: Accuracy
type: accuracy
value: 0.6237216312108128
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# longformer-predicted-pos-encodings-4096-2L
This model is a fine-tuned version of [data/models/longformer-predicted-pos-encodings-4096](https://huggingface.co/data/models/longformer-predicted-pos-encodings-4096) on the c4 en dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0208
- Accuracy: 0.6237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 1.0
- training_steps: 6400
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2154 | 1.0 | 6400 | 2.0203 | 0.6238 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.12.0+cu113
- Datasets 2.6.1
- Tokenizers 0.12.1
|