Technical Report and Model Pipeline
To access our technical report and model pipeline scripts visit our github
SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-s. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-s
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Represent this sentence for searching relevant passages: Philadelphia Business Journal 01/30/83',
'The Philadelphia Business Journal is a diversified business media company in Philadelphia, Pennsylvania, publishing daily stories on its website and social networks, and a weekly edition available in print and online. It is published by the American City Business Journals. See also List of newspapers in Pennsylvania References External links Business newspapers published in the United States Newspapers published in Philadelphia Jan 30 1983\n',
"Have you just bought your brand new Nintendo Wii console? Are you gutted that you can't get Wii Connect 24 in your country of residence? This article will resolve this problem, so you can surf the Internet on your Wii!\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 55,736 training samples
- Columns:
anchors
andpositive
- Approximate statistics based on the first 1000 samples:
anchors positive type string string details - min: 14 tokens
- mean: 20.25 tokens
- max: 33 tokens
- min: 15 tokens
- mean: 47.2 tokens
- max: 75 tokens
- Samples:
anchors positive Represent this sentence for searching relevant passages: are bugs attracted to citronella November 10?
Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10
Represent this sentence for searching relevant passages: are bugs attracted to citronella 11/10/09?
Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10/09
Represent this sentence for searching relevant passages: are bugs attracted to citronella Jan 15?
Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 01/15
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,000 evaluation samples
- Columns:
anchors
andpositive
- Approximate statistics based on the first 1000 samples:
anchors positive type string string details - min: 11 tokens
- mean: 21.67 tokens
- max: 39 tokens
- min: 15 tokens
- mean: 67.0 tokens
- max: 512 tokens
- Samples:
anchors positive Represent this sentence for searching relevant passages: 4/23 Socialize With Someone Who Is Losing Interest in You
04/23 It can hurt to realize that someone you care about is losing interest in you. If a friend has stopped calling you and no longer makes plans to hang out, your first instinct might be to contact them more frequently or to ignore them in return.
Represent this sentence for searching relevant passages: Alathur taluk, Perambalur 04/19/29
Alathur taluk is a taluk in Perambalur district in the Indian state of Tamil Nadu. It was created by former chief minister J.Jayalalithaa for issues of population increase. Kunnam taluk was bifurcated to form this new taluk. Villages There are 39 villages in Alathur taluk excluding the headquarters Alathur. References Perambalur district Taluks of Perambalur district 2029 Apr 19
Represent this sentence for searching relevant passages: 01/04 how much weight does a baby gain in the first month?
01/04 During their first month, most newborns gain weight at a rate of about 1 ounce (30 grams) per day. They generally grow in height about 1 to 1½ inches (2.54 to 3.81 centimeters) during the first month. Many newborns go through a period of rapid growth when they are 7 to 10 days old and again at 3 and 6 weeks.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 1warmup_ratio
: 0.1warmup_steps
: 400bf16
: Truetorch_compile
: Truetorch_compile_backend
: inductorbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 400log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Truetorch_compile_backend
: inductortorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0023 | 1 | 2.3154 | - |
0.0229 | 10 | 2.3237 | - |
0.0459 | 20 | 2.4036 | - |
0.0688 | 30 | 2.3314 | - |
0.0917 | 40 | 2.3171 | - |
0.1147 | 50 | 2.2891 | - |
0.0023 | 1 | 2.2343 | - |
0.0229 | 10 | 2.2256 | - |
0.0459 | 20 | 2.2924 | - |
0.0688 | 30 | 2.2354 | - |
0.0917 | 40 | 2.2281 | - |
0.1147 | 50 | 2.2018 | - |
0.1376 | 60 | 2.2377 | - |
0.1606 | 70 | 2.2001 | - |
0.1835 | 80 | 2.158 | - |
0.2064 | 90 | 2.1405 | - |
0.2294 | 100 | 2.0916 | - |
0.2523 | 110 | 2.0374 | - |
0.2752 | 120 | 2.0492 | - |
0.2982 | 130 | 1.9824 | - |
0.3211 | 140 | 1.9571 | - |
0.3440 | 150 | 1.8317 | - |
0.3670 | 160 | 1.7183 | - |
0.3899 | 170 | 1.5928 | - |
0.4128 | 180 | 1.5695 | - |
0.4358 | 190 | 1.4592 | - |
0.4587 | 200 | 1.2667 | 0.2031 |
0.4817 | 210 | 1.3865 | - |
0.5046 | 220 | 1.2924 | - |
0.5275 | 230 | 1.3042 | - |
0.5505 | 240 | 1.4393 | - |
0.5734 | 250 | 1.3402 | - |
0.5963 | 260 | 1.1939 | - |
0.6193 | 270 | 1.1795 | - |
0.6422 | 280 | 1.1012 | - |
0.6651 | 290 | 1.0379 | - |
0.6881 | 300 | 0.9865 | - |
0.7110 | 310 | 0.9088 | - |
0.7339 | 320 | 0.9132 | - |
0.7569 | 330 | 0.8819 | - |
0.7798 | 340 | 0.8631 | - |
0.8028 | 350 | 1.4084 | - |
0.8257 | 360 | 1.325 | - |
0.8486 | 370 | 1.2373 | - |
0.8716 | 380 | 1.1881 | - |
0.8945 | 390 | 1.1656 | - |
0.9174 | 400 | 0.7767 | 0.0607 |
0.9404 | 410 | 0.1511 | - |
0.9633 | 420 | 0.1439 | - |
0.9862 | 430 | 0.1216 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 12,495
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for khoj-ai/timely-arctic-small
Base model
Snowflake/snowflake-arctic-embed-s