Technical Report and Model Pipeline

To access our technical report and model pipeline scripts visit our github

SentenceTransformer based on Snowflake/snowflake-arctic-embed-s

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-s. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-s
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Represent this sentence for searching relevant passages: Philadelphia Business Journal 01/30/83',
    'The Philadelphia Business Journal is a diversified business media company in Philadelphia, Pennsylvania, publishing daily stories on its website and social networks, and a weekly edition available in print and online. It is published by the American City Business Journals. See also List of newspapers in Pennsylvania References External links Business newspapers published in the United States Newspapers published in Philadelphia Jan 30 1983\n',
    "Have you just bought your brand new Nintendo Wii console? Are you gutted that you can't get Wii Connect 24 in your country of residence? This article will resolve this problem, so you can surf the Internet on your Wii!\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 55,736 training samples
  • Columns: anchors and positive
  • Approximate statistics based on the first 1000 samples:
    anchors positive
    type string string
    details
    • min: 14 tokens
    • mean: 20.25 tokens
    • max: 33 tokens
    • min: 15 tokens
    • mean: 47.2 tokens
    • max: 75 tokens
  • Samples:
    anchors positive
    Represent this sentence for searching relevant passages: are bugs attracted to citronella November 10? Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10
    Represent this sentence for searching relevant passages: are bugs attracted to citronella 11/10/09? Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 11/10/09
    Represent this sentence for searching relevant passages: are bugs attracted to citronella Jan 15? Citronella is naturally occurring oil that repels insects. ... “Citronella oil is repellent to mosquitoes to a degree, but the amount being put out by a candle isn't going to be very effective,” Eric Hoffer, president of Hoffer Pest, told TODAY Home. 01/15
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,000 evaluation samples
  • Columns: anchors and positive
  • Approximate statistics based on the first 1000 samples:
    anchors positive
    type string string
    details
    • min: 11 tokens
    • mean: 21.67 tokens
    • max: 39 tokens
    • min: 15 tokens
    • mean: 67.0 tokens
    • max: 512 tokens
  • Samples:
    anchors positive
    Represent this sentence for searching relevant passages: 4/23 Socialize With Someone Who Is Losing Interest in You 04/23 It can hurt to realize that someone you care about is losing interest in you. If a friend has stopped calling you and no longer makes plans to hang out, your first instinct might be to contact them more frequently or to ignore them in return.
    Represent this sentence for searching relevant passages: Alathur taluk, Perambalur 04/19/29 Alathur taluk is a taluk in Perambalur district in the Indian state of Tamil Nadu. It was created by former chief minister J.Jayalalithaa for issues of population increase. Kunnam taluk was bifurcated to form this new taluk. Villages There are 39 villages in Alathur taluk excluding the headquarters Alathur. References Perambalur district Taluks of Perambalur district 2029 Apr 19
    Represent this sentence for searching relevant passages: 01/04 how much weight does a baby gain in the first month? 01/04 During their first month, most newborns gain weight at a rate of about 1 ounce (30 grams) per day. They generally grow in height about 1 to 1½ inches (2.54 to 3.81 centimeters) during the first month. Many newborns go through a period of rapid growth when they are 7 to 10 days old and again at 3 and 6 weeks.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • warmup_steps: 400
  • bf16: True
  • torch_compile: True
  • torch_compile_backend: inductor
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 400
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: True
  • torch_compile_backend: inductor
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss
0.0023 1 2.3154 -
0.0229 10 2.3237 -
0.0459 20 2.4036 -
0.0688 30 2.3314 -
0.0917 40 2.3171 -
0.1147 50 2.2891 -
0.0023 1 2.2343 -
0.0229 10 2.2256 -
0.0459 20 2.2924 -
0.0688 30 2.2354 -
0.0917 40 2.2281 -
0.1147 50 2.2018 -
0.1376 60 2.2377 -
0.1606 70 2.2001 -
0.1835 80 2.158 -
0.2064 90 2.1405 -
0.2294 100 2.0916 -
0.2523 110 2.0374 -
0.2752 120 2.0492 -
0.2982 130 1.9824 -
0.3211 140 1.9571 -
0.3440 150 1.8317 -
0.3670 160 1.7183 -
0.3899 170 1.5928 -
0.4128 180 1.5695 -
0.4358 190 1.4592 -
0.4587 200 1.2667 0.2031
0.4817 210 1.3865 -
0.5046 220 1.2924 -
0.5275 230 1.3042 -
0.5505 240 1.4393 -
0.5734 250 1.3402 -
0.5963 260 1.1939 -
0.6193 270 1.1795 -
0.6422 280 1.1012 -
0.6651 290 1.0379 -
0.6881 300 0.9865 -
0.7110 310 0.9088 -
0.7339 320 0.9132 -
0.7569 330 0.8819 -
0.7798 340 0.8631 -
0.8028 350 1.4084 -
0.8257 360 1.325 -
0.8486 370 1.2373 -
0.8716 380 1.1881 -
0.8945 390 1.1656 -
0.9174 400 0.7767 0.0607
0.9404 410 0.1511 -
0.9633 420 0.1439 -
0.9862 430 0.1216 -

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.43.3
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
9,219
Safetensors
Model size
33.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for khoj-ai/timely-arctic-small

Finetuned
(2)
this model