Edit model card

roberta-base_legal_ner_finetuned

This model is a fine-tuned version of FacebookAI/roberta-base on the Darrow LegalLens Shared Task NER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2416
  • Law Precision: 0.8319
  • Law Recall: 0.8785
  • Law F1: 0.8545
  • Law Number: 107
  • Violated by Precision: 0.8361
  • Violated by Recall: 0.7183
  • Violated by F1: 0.7727
  • Violated by Number: 71
  • Violated on Precision: 0.5
  • Violated on Recall: 0.5
  • Violated on F1: 0.5
  • Violated on Number: 64
  • Violation Precision: 0.6494
  • Violation Recall: 0.7032
  • Violation F1: 0.6752
  • Violation Number: 374
  • Overall Precision: 0.6843
  • Overall Recall: 0.7143
  • Overall F1: 0.6990
  • Overall Accuracy: 0.9553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Law Precision Law Recall Law F1 Law Number Violated by Precision Violated by Recall Violated by F1 Violated by Number Violated on Precision Violated on Recall Violated on F1 Violated on Number Violation Precision Violation Recall Violation F1 Violation Number Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 85 0.7386 0.0 0.0 0.0 107 0.0 0.0 0.0 71 0.0 0.0 0.0 64 0.0 0.0 0.0 374 0.0 0.0 0.0 0.7707
No log 2.0 170 0.3510 0.0 0.0 0.0 107 0.0 0.0 0.0 71 0.0 0.0 0.0 64 0.2072 0.2781 0.2374 374 0.2072 0.1688 0.1860 0.8901
No log 3.0 255 0.2471 0.4265 0.2710 0.3314 107 0.0 0.0 0.0 71 0.3810 0.125 0.1882 64 0.3965 0.4813 0.4348 374 0.3996 0.3523 0.3745 0.9199
No log 4.0 340 0.1996 0.7596 0.7383 0.7488 107 0.5128 0.5634 0.5369 71 0.3827 0.4844 0.4276 64 0.5101 0.6096 0.5554 374 0.5324 0.6136 0.5701 0.9385
No log 5.0 425 0.1984 0.7946 0.8318 0.8128 107 0.64 0.6761 0.6575 71 0.5091 0.4375 0.4706 64 0.5102 0.6684 0.5787 374 0.5669 0.6737 0.6157 0.9449
0.5018 6.0 510 0.2447 0.7456 0.7944 0.7692 107 0.75 0.6761 0.7111 71 0.4068 0.375 0.3902 64 0.6110 0.6845 0.6456 374 0.6296 0.6705 0.6494 0.9465
0.5018 7.0 595 0.2264 0.8125 0.8505 0.8311 107 0.7736 0.5775 0.6613 71 0.4754 0.4531 0.4640 64 0.6276 0.7166 0.6692 374 0.6570 0.6964 0.6761 0.9511
0.5018 8.0 680 0.2243 0.8598 0.8598 0.8598 107 0.7812 0.7042 0.7407 71 0.4912 0.4375 0.4628 64 0.6209 0.7139 0.6642 374 0.6641 0.7094 0.6860 0.9541
0.5018 9.0 765 0.2327 0.7934 0.8972 0.8421 107 0.7808 0.8028 0.7917 71 0.4231 0.5156 0.4648 64 0.6037 0.7005 0.6485 374 0.6346 0.7273 0.6778 0.9547
0.5018 10.0 850 0.2416 0.8319 0.8785 0.8545 107 0.8361 0.7183 0.7727 71 0.5 0.5 0.5 64 0.6494 0.7032 0.6752 374 0.6843 0.7143 0.6990 0.9553

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
124M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for khalidrajan/roberta-base_legal_ner_finetuned

Finetuned
(1302)
this model