checkpoints

This model is a fine-tuned version of kavg/LiLT-RE-EN on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.4702
  • Recall: 0.5581
  • F1: 0.5104
  • Loss: 0.5301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step F1 Validation Loss Precision Recall
0.0661 41.67 500 0.3769 0.2542 0.3360 0.4293
0.0547 83.33 1000 0.4404 0.2624 0.3805 0.5227
0.0671 125.0 1500 0.4580 0.2623 0.4031 0.5303
0.0284 166.67 2000 0.4764 0.3800 0.4142 0.5606
0.0177 208.33 2500 0.4883 0.3349 0.4371 0.5530
0.0164 250.0 3000 0.4926 0.3123 0.4491 0.5455
0.0081 291.67 3500 0.4966 0.3830 0.4458 0.5606
0.0067 333.33 4000 0.4916 0.3459 0.4424 0.5530
0.0048 375.0 4500 0.4989 0.4200 0.4527 0.5556
0.0112 416.67 5000 0.5158 0.4377 0.4672 0.5758
0.0052 458.33 5500 0.5085 0.4983 0.4619 0.5657
0.0023 500.0 6000 0.5086 0.5621 0.4654 0.5606
0.0022 541.67 6500 0.5074 0.5063 0.4635 0.5606
0.0083 583.33 7000 0.5109 0.5471 0.4693 0.5606
0.0023 625.0 7500 0.5028 0.5268 0.4559 0.5606
0.0027 666.67 8000 0.5098 0.5385 0.4674 0.5606
0.0078 708.33 8500 0.4581 0.5657 0.5062 0.5135
0.0015 750.0 9000 0.4702 0.5581 0.5104 0.5301
0.0043 791.67 9500 0.4595 0.5581 0.5040 0.5684
0.0007 833.33 10000 0.4587 0.5606 0.5045 0.5711

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
12
Safetensors
Model size
287M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kavg/LiLT-RE-EN-SIN

Finetuned
kavg/LiLT-RE-EN
Finetuned
(1)
this model