checkpoints

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the funsd_re dataset. It achieves the following results on the evaluation set:

  • Precision: 0.3264
  • Recall: 0.4864
  • F1: 0.3907
  • Loss: 0.4377

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 5000

Training results

Training Loss Epoch Step F1 Validation Loss Precision Recall
0.1604 26.32 500 0 0.1513 0 0
0.1012 52.63 1000 0.0098 0.0786 0.5 0.0049
0.0994 78.95 1500 0.2518 0.1847 0.3729 0.1901
0.0694 105.26 2000 0.3499 0.1926 0.3667 0.3346
0.0771 131.58 2500 0.3856 0.3295 0.3450 0.4370
0.0565 157.89 3000 0.3865 0.4137 0.3293 0.4679
0.0411 184.21 3500 0.3808 0.3624 0.3252 0.4593
0.0463 210.53 4000 0.3832 0.5089 0.3221 0.4728
0.0414 236.84 4500 0.3911 0.6137 0.3305 0.4790
0.036 263.16 5000 0.3910 0.4428 0.3275 0.4852

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
11
Safetensors
Model size
287M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for kavg/LiLT-RE-EN

Finetuned
(24)
this model
Finetunes
1 model