swin-tiny-patch4-window7-224-classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2787
  • Accuracy: 0.9264

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1469 1.0 100 0.3027 0.9127
0.1677 2.0 200 0.3351 0.9001
0.167 2.99 300 0.3875 0.8931
0.1556 4.0 401 0.3814 0.8969
0.1328 5.0 501 0.3281 0.9046
0.1 6.0 601 0.3726 0.9004
0.1188 6.99 701 0.3736 0.9046
0.1257 8.0 802 0.3381 0.9102
0.1017 9.0 902 0.2872 0.9215
0.0987 10.0 1002 0.3067 0.9176
0.0874 10.99 1102 0.2919 0.9165
0.0901 12.0 1203 0.2942 0.9229
0.0831 13.0 1303 0.2974 0.9232
0.0838 14.0 1403 0.2787 0.9264
0.0603 14.96 1500 0.2780 0.9264

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
15
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for karoladelk/swin-tiny-patch4-window7-224-classification

Finetuned
(492)
this model