Edit model card

ServiModel

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9224
  • Accuracy: 0.5437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9203 0.0120 3 1.0271 0.5264
0.7804 0.0239 6 0.9705 0.5287
0.8766 0.0359 9 0.9562 0.5299
0.8149 0.0478 12 0.9631 0.5345
0.8701 0.0598 15 0.9796 0.5379
0.992 0.0717 18 0.9764 0.5276
0.6035 0.0837 21 0.9932 0.5356
0.7398 0.0956 24 1.0167 0.5368
1.1153 0.1076 27 1.0184 0.5322
1.0794 0.1195 30 0.9807 0.5471
0.9069 0.1315 33 0.9571 0.5368
1.0911 0.1434 36 0.9478 0.5356
0.856 0.1554 39 0.9417 0.5276
0.7464 0.1673 42 0.9329 0.5368
1.0068 0.1793 45 0.9318 0.5402
0.8869 0.1912 48 0.9383 0.5402
1.0068 0.2032 51 0.9451 0.5517
0.9831 0.2151 54 0.9459 0.5460
1.0295 0.2271 57 0.9345 0.5356
0.6741 0.2390 60 0.9517 0.5414
0.9761 0.2510 63 0.9543 0.5448
0.7699 0.2629 66 0.9568 0.5368
0.9349 0.2749 69 0.9716 0.5287
0.8818 0.2869 72 0.9599 0.5322
0.857 0.2988 75 0.9496 0.5345
0.8135 0.3108 78 0.9521 0.5310
0.727 0.3227 81 0.9635 0.5402
0.9652 0.3347 84 0.9609 0.5414
0.7455 0.3466 87 0.9702 0.5299
0.7711 0.3586 90 0.9836 0.5230
0.7348 0.3705 93 1.0026 0.5276
0.8274 0.3825 96 1.0305 0.5368
0.9674 0.3944 99 1.0415 0.5276
1.0927 0.4064 102 1.0280 0.5253
1.1576 0.4183 105 0.9987 0.5356
0.8832 0.4303 108 0.9807 0.5322
0.5615 0.4422 111 0.9751 0.5437
1.2028 0.4542 114 0.9600 0.5391
0.8733 0.4661 117 0.9601 0.5448
0.8855 0.4781 120 0.9657 0.5391
1.0181 0.4900 123 0.9632 0.5379
0.8833 0.5020 126 0.9461 0.5379
1.0474 0.5139 129 0.9384 0.5425
1.173 0.5259 132 0.9260 0.5529
1.0996 0.5378 135 0.9186 0.5552
0.6445 0.5498 138 0.9149 0.5586
0.7965 0.5618 141 0.9176 0.5540
1.0051 0.5737 144 0.9213 0.5517
0.8613 0.5857 147 0.9298 0.5506
0.8603 0.5976 150 0.9345 0.5460
0.8247 0.6096 153 0.9306 0.5506
0.8808 0.6215 156 0.9269 0.5506
1.0487 0.6335 159 0.9235 0.5529
0.9654 0.6454 162 0.9236 0.5529
0.9228 0.6574 165 0.9196 0.5598
0.8636 0.6693 168 0.9153 0.5586
0.7859 0.6813 171 0.9174 0.5609
0.7514 0.6932 174 0.9177 0.5598
0.7972 0.7052 177 0.9187 0.5655
0.8669 0.7171 180 0.9277 0.5471
0.8085 0.7291 183 0.9406 0.5437
0.9855 0.7410 186 0.9494 0.5391
0.9821 0.7530 189 0.9533 0.5437
0.8769 0.7649 192 0.9556 0.5448
0.7997 0.7769 195 0.9610 0.5448
0.9333 0.7888 198 0.9580 0.5471
0.9406 0.8008 201 0.9454 0.5437
0.7489 0.8127 204 0.9389 0.5425
0.7847 0.8247 207 0.9348 0.5414
0.7151 0.8367 210 0.9297 0.5425
0.8573 0.8486 213 0.9259 0.5483
0.88 0.8606 216 0.9238 0.5529
0.8127 0.8725 219 0.9221 0.5506
0.7742 0.8845 222 0.9203 0.5506
1.0872 0.8964 225 0.9198 0.5471
0.6082 0.9084 228 0.9196 0.5471
0.6126 0.9203 231 0.9206 0.5471
0.8127 0.9323 234 0.9217 0.5460
0.8886 0.9442 237 0.9221 0.5448
0.9518 0.9562 240 0.9222 0.5448
0.7686 0.9681 243 0.9223 0.5460
0.7965 0.9801 246 0.9224 0.5437
0.7674 0.9920 249 0.9224 0.5437

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.