wav2vec2-large-300m-colab-only-gn
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5274
- Wer: 0.5229
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
20.8148 | 0.45 | 25 | 13.5976 | 1.0 |
7.0188 | 0.9 | 50 | 5.5263 | 1.0 |
4.1285 | 1.35 | 75 | 3.6078 | 1.0 |
3.338 | 1.8 | 100 | 3.3217 | 1.0 |
3.2829 | 2.25 | 125 | 3.2781 | 1.0 |
3.272 | 2.7 | 150 | 3.2601 | 1.0 |
3.2224 | 3.15 | 175 | 3.2234 | 1.0 |
3.1949 | 3.6 | 200 | 3.1998 | 1.0 |
3.1846 | 4.05 | 225 | 3.1841 | 1.0 |
3.1615 | 4.5 | 250 | 3.1719 | 1.0 |
3.1367 | 4.95 | 275 | 3.1132 | 1.0 |
3.0111 | 5.41 | 300 | 2.9344 | 1.0 |
2.7786 | 5.86 | 325 | 2.5643 | 1.0 |
2.2106 | 6.31 | 350 | 1.8132 | 1.0 |
1.6365 | 6.76 | 375 | 1.4008 | 0.9982 |
1.178 | 7.21 | 400 | 1.0678 | 0.9845 |
0.8903 | 7.66 | 425 | 0.8744 | 0.9369 |
0.7429 | 8.11 | 450 | 0.7213 | 0.8752 |
0.5931 | 8.56 | 475 | 0.6681 | 0.8189 |
0.5592 | 9.01 | 500 | 0.6622 | 0.7895 |
0.4316 | 9.46 | 525 | 0.6177 | 0.7644 |
0.4098 | 9.91 | 550 | 0.5599 | 0.7874 |
0.3176 | 10.36 | 575 | 0.5649 | 0.7001 |
0.3142 | 10.81 | 600 | 0.5828 | 0.6867 |
0.3227 | 11.26 | 625 | 0.5505 | 0.6736 |
0.275 | 11.71 | 650 | 0.5432 | 0.6540 |
0.2783 | 12.16 | 675 | 0.5372 | 0.6462 |
0.2316 | 12.61 | 700 | 0.5078 | 0.6379 |
0.2281 | 13.06 | 725 | 0.5059 | 0.6161 |
0.2191 | 13.51 | 750 | 0.5175 | 0.5956 |
0.1911 | 13.96 | 775 | 0.5216 | 0.5929 |
0.1731 | 14.41 | 800 | 0.5069 | 0.5789 |
0.1743 | 14.86 | 825 | 0.5207 | 0.5971 |
0.1755 | 15.32 | 850 | 0.5436 | 0.6307 |
0.1568 | 15.77 | 875 | 0.5374 | 0.6001 |
0.1629 | 16.22 | 900 | 0.5429 | 0.6102 |
0.1418 | 16.67 | 925 | 0.5089 | 0.5762 |
0.136 | 17.12 | 950 | 0.5291 | 0.5878 |
0.1354 | 17.57 | 975 | 0.5381 | 0.5840 |
0.1351 | 18.02 | 1000 | 0.5511 | 0.5947 |
0.1252 | 18.47 | 1025 | 0.5204 | 0.5643 |
0.1215 | 18.92 | 1050 | 0.5385 | 0.5613 |
0.1188 | 19.37 | 1075 | 0.5063 | 0.5718 |
0.1209 | 19.82 | 1100 | 0.5211 | 0.5488 |
0.1091 | 20.27 | 1125 | 0.5245 | 0.5557 |
0.112 | 20.72 | 1150 | 0.4910 | 0.5587 |
0.102 | 21.17 | 1175 | 0.5192 | 0.5581 |
0.0947 | 21.62 | 1200 | 0.5500 | 0.5718 |
0.1066 | 22.07 | 1225 | 0.5288 | 0.5488 |
0.1011 | 22.52 | 1250 | 0.5180 | 0.5438 |
0.0974 | 22.97 | 1275 | 0.5089 | 0.5277 |
0.0926 | 23.42 | 1300 | 0.5222 | 0.5301 |
0.0871 | 23.87 | 1325 | 0.5135 | 0.5366 |
0.0808 | 24.32 | 1350 | 0.4990 | 0.5331 |
0.0739 | 24.77 | 1375 | 0.5281 | 0.5351 |
0.0841 | 25.23 | 1400 | 0.5321 | 0.5360 |
0.0743 | 25.68 | 1425 | 0.5508 | 0.5447 |
0.0809 | 26.13 | 1450 | 0.5228 | 0.5396 |
0.0631 | 26.58 | 1475 | 0.5284 | 0.5351 |
0.0788 | 27.03 | 1500 | 0.5250 | 0.5289 |
0.0754 | 27.48 | 1525 | 0.5204 | 0.5259 |
0.0663 | 27.93 | 1550 | 0.5275 | 0.5313 |
0.0645 | 28.38 | 1575 | 0.5288 | 0.5259 |
0.0729 | 28.83 | 1600 | 0.5268 | 0.5259 |
0.0656 | 29.28 | 1625 | 0.5277 | 0.5232 |
0.0703 | 29.73 | 1650 | 0.5274 | 0.5229 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.