smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-1e-3
This model was trained from scratch on the kanishka/counterfactual_babylm_aann_high_variability_numeral dataset. It achieves the following results on the evaluation set:
- Loss: 3.3843
- Accuracy: 0.4119
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 32000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.5998 | 1.0 | 18596 | 3.7535 | 0.3595 |
3.383 | 2.0 | 37192 | 3.5660 | 0.3813 |
3.258 | 3.0 | 55788 | 3.5104 | 0.3914 |
3.1754 | 4.0 | 74384 | 3.4088 | 0.3985 |
3.1222 | 5.0 | 92980 | 3.4039 | 0.4021 |
3.0807 | 6.0 | 111576 | 3.3850 | 0.4050 |
3.0411 | 7.0 | 130172 | 3.3609 | 0.4064 |
3.0096 | 8.0 | 148768 | 3.3502 | 0.4082 |
2.9845 | 9.0 | 167364 | 3.3612 | 0.4089 |
2.9585 | 10.0 | 185960 | 3.3495 | 0.4091 |
2.9308 | 11.0 | 204556 | 3.3414 | 0.4115 |
2.9139 | 12.0 | 223152 | 3.3366 | 0.4117 |
2.8894 | 13.0 | 241748 | 3.3379 | 0.4112 |
2.8685 | 14.0 | 260344 | 3.3566 | 0.4113 |
2.8472 | 15.0 | 278940 | 3.3577 | 0.4114 |
2.827 | 16.0 | 297536 | 3.3584 | 0.4123 |
2.8091 | 17.0 | 316132 | 3.3707 | 0.4115 |
2.7903 | 18.0 | 334728 | 3.3751 | 0.4117 |
2.7681 | 19.0 | 353324 | 3.3758 | 0.4121 |
2.7544 | 20.0 | 371920 | 3.3843 | 0.4119 |
Framework versions
- Transformers 4.38.0
- Pytorch 2.3.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train kanishka/smolm-autoreg-bpe-counterfactual_babylm_aann_high_variability_numeral-1e-3
Evaluation results
- Accuracy on kanishka/counterfactual_babylm_aann_high_variability_numeralself-reported0.412