See axolotl config
axolotl version: 0.4.0
# Upload the final model to Huggingface
hub_model_id: kareemamrr/tinyllama-1.1B_alpaca_2k_lora
# Store the training logs in weights and biases
wandb_entity: kamr54
wandb_project: tinyllama-1.1B_alpaca_2k_peft
wandb_name: lora-run
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
tinyllama-1.1B_alpaca_2k_lora
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the Alpaca 2k test set. It achieves the following results on the evaluation set:
- Loss: 1.2127
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4615 | 0.08 | 1 | 1.4899 |
1.3847 | 0.24 | 3 | 1.4865 |
1.3673 | 0.48 | 6 | 1.4376 |
1.2673 | 0.72 | 9 | 1.3401 |
1.2257 | 0.96 | 12 | 1.2967 |
1.2511 | 1.16 | 15 | 1.2835 |
1.2267 | 1.4 | 18 | 1.2501 |
1.1348 | 1.6400 | 21 | 1.2330 |
1.2699 | 1.88 | 24 | 1.2276 |
1.1486 | 2.08 | 27 | 1.2258 |
1.1515 | 2.32 | 30 | 1.2224 |
1.1949 | 2.56 | 33 | 1.2175 |
1.1127 | 2.8 | 36 | 1.2158 |
1.1506 | 3.04 | 39 | 1.2126 |
1.1886 | 3.24 | 42 | 1.2110 |
1.1002 | 3.48 | 45 | 1.2106 |
1.1894 | 3.7200 | 48 | 1.2127 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4