Multilingual E5 for Document Classification (DocLayNet)
This model is a fine-tuned version of intfloat/multilingual-e5-large for document text classification based on the DocLayNet dataset.
Model description
- Base model: intfloat/multilingual-e5-large
- Task: Document text classification
- Languages: Multilingual
Training data
- Dataset: DocLayNet-base
- Source: https://huggingface.co/datasets/pierreguillou/DocLayNet-base
- Categories:
{
'financial_reports': 0,
'government_tenders': 1,
'laws_and_regulations': 2,
'manuals': 3,
'patents': 4,
'scientific_articles': 5
}
Training procedure
Trained on single gpu for 2 epochs for apx. 20 minutes.
hyperparameters:
{
'batch_size': 8,
'num_epochs': 10,
'learning_rate': 2e-5,
'weight_decay': 0.01,
'warmup_ratio': 0.1,
'gradient_clip': 1.0,
'label_smoothing': 0.1,
'optimizer': 'AdamW',
'scheduler': 'cosine_with_warmup'
}
Evaluation results
Test Loss: 0.5192, Test Acc: 0.9719
Usage:
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-classification", model="kaixkhazaki/multilingual-e5-doclaynet")
prediction = pipe("This is some text from a financial report")
print(prediction)
- Downloads last month
- 116
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kaixkhazaki/multilingual-e5-doclaynet
Base model
intfloat/multilingual-e5-largeDataset used to train kaixkhazaki/multilingual-e5-doclaynet
Evaluation results
- Test Accuracy on DocLayNetself-reported0.972
- Test Loss on DocLayNetself-reported0.519