Edit model card

test-ner

This model is a fine-tuned version of bert-base-chinese on an CMeEE-V2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4423
  • Precision: 0.5197
  • Recall: 0.6287
  • F1: 0.5690
  • Accuracy: 0.8492

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6791 1.0 938 0.4600 0.5031 0.6096 0.5513 0.8435
0.3969 2.0 1876 0.4423 0.5197 0.6287 0.5690 0.8492

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
102M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for kaishih/bert-tzh-med-ner

Finetuned
(147)
this model

Dataset used to train kaishih/bert-tzh-med-ner