File size: 2,456 Bytes
158eb35
 
 
57a1419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b2102
 
57a1419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
---

### SuperCOT LoRA
SuperCOT is a LoRA I trained with the aim of making LLaMa follow prompts for Langchain better, by infusing chain-of-thought datasets, code explanations and instructions, snippets, logical deductions and Alpaca GPT-4 prompts.
Trained against LLaMa 30B 4-bit for 3 epochs with cutoff length 1024, using a mixture of the following datasets:

[https://huggingface.co/datasets/QingyiSi/Alpaca-CoT](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)

Chain of thought QED

Chain of thought Aqua

CodeAlpaca

[https://huggingface.co/datasets/neulab/conala](https://huggingface.co/datasets/neulab/conala)

Code snippets

[https://huggingface.co/datasets/yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)

Alpaca GPT4

You should prompt the LoRA the same way you would prompt Alpaca or Alpacino:

```
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
<instruction>

### Input:
<any additional context. Remove this if it's not neccesary>

### Response:
<make sure to leave a single new-line here for optimal results>
```

13B and 7B versions coming soon

### Citations
Alpaca COT datasets
```
@misc{alpaca-cot,
  author = {Qingyi Si, Zheng Lin },
  school = {Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China},
  title = {Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/PhoebusSi/alpaca-CoT}},
}
```
Stanford Alpaca
```
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
Google FLAN
```
@inproceedings{weifinetuned,
  title={Finetuned Language Models are Zero-Shot Learners},
  author={Wei, Jason and Bosma, Maarten and Zhao, Vincent and Guu, Kelvin and Yu, Adams Wei and Lester, Brian and Du, Nan and Dai, Andrew M and Le, Quoc V},
  booktitle={International Conference on Learning Representations}
}
```