kaiokendev commited on
Commit
57a1419
·
1 Parent(s): 158eb35

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -1,3 +1,71 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+ ### SuperCOT LoRA
6
+ SuperCOT is a LoRA I trained with the aim of making LLaMa follow prompts for Langchain better, by infusing chain-of-thought datasets, code explanations and instructions, snippets, logical deductions and Alpaca GPT-4 prompts.
7
+ Trained against LLaMa 30B 4-bit for 3 epochs with cutoff length 1024, using a mixture of the following datasets:
8
+
9
+ [https://huggingface.co/datasets/QingyiSi/Alpaca-CoT](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
10
+
11
+ Chain of thought QED
12
+
13
+ Chain of thought Aqua
14
+
15
+ CodeAlpaca
16
+
17
+ [https://huggingface.co/datasets/neulab/conala](https://huggingface.co/datasets/neulab/conala)
18
+
19
+ Code snippets
20
+
21
+ [https://huggingface.co/datasets/yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)
22
+
23
+ Alpaca GPT4
24
+
25
+ You should prompt the LoRA the same way you would prompt Alpaca or Alpacino:
26
+
27
+ ```
28
+ Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
29
+
30
+ ### Instruction:
31
+ <instruction>
32
+
33
+ ### Input:
34
+ <any additional context. Remove this if it's not neccesary>
35
+
36
+ ### Response:
37
+ <make sure to leave a single new-line here for optimal results>
38
+ ```
39
+
40
+ ### Citations
41
+ Alpaca COT datasets
42
+ ```
43
+ @misc{alpaca-cot,
44
+ author = {Qingyi Si, Zheng Lin },
45
+ school = {Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China},
46
+ title = {Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface},
47
+ year = {2023},
48
+ publisher = {GitHub},
49
+ journal = {GitHub repository},
50
+ howpublished = {\url{https://github.com/PhoebusSi/alpaca-CoT}},
51
+ }
52
+ ```
53
+ Stanford Alpaca
54
+ ```
55
+ @misc{alpaca,
56
+ author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
57
+ title = {Stanford Alpaca: An Instruction-following LLaMA model},
58
+ year = {2023},
59
+ publisher = {GitHub},
60
+ journal = {GitHub repository},
61
+ howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
62
+ }
63
+ ```
64
+ Google FLAN
65
+ ```
66
+ @inproceedings{weifinetuned,
67
+ title={Finetuned Language Models are Zero-Shot Learners},
68
+ author={Wei, Jason and Bosma, Maarten and Zhao, Vincent and Guu, Kelvin and Yu, Adams Wei and Lester, Brian and Du, Nan and Dai, Andrew M and Le, Quoc V},
69
+ booktitle={International Conference on Learning Representations}
70
+ }
71
+ ```