Model Description

YOLOv9: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

YOLOv9-Pip: Packaged version of the Yolov9 repository

Paper Repo: Implementation of paper - YOLOv9

Installation

pip install yolov9pip

Yolov7 Inference

import yolov9

# load pretrained or custom model
model = yolov7.load('kadirnar/yolov9-gelan-c')

# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.classes = None  # (optional list) filter by class

# set image
imgs = 'inference/images'

# perform inference
results = model(imgs)

# inference with larger input size and test time augmentation
results = model(img, size=640, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

BibTeX Entry and Citation Info

@article{wang2024yolov9,
 title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
 author={Wang, Chien-Yao  and Liao, Hong-Yuan Mark},
 booktitle={arXiv preprint arXiv:2402.13616},
 year={2024}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train kadirnar/yolov9-gelan-c