File size: 2,459 Bytes
c6db2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ky-finetuned-skindiseaseicthuawei32
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9622508792497069
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ky-finetuned-skindiseaseicthuawei32
This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1058
- Accuracy: 0.9623
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3894 | 1.0 | 300 | 0.6160 | 0.8061 |
| 0.6543 | 2.0 | 600 | 0.4378 | 0.8635 |
| 0.471 | 3.0 | 900 | 0.2566 | 0.9161 |
| 0.3853 | 4.0 | 1200 | 0.2498 | 0.9135 |
| 0.3225 | 5.0 | 1500 | 0.2157 | 0.9290 |
| 0.2769 | 6.0 | 1800 | 0.1747 | 0.9407 |
| 0.2364 | 7.0 | 2100 | 0.1502 | 0.9487 |
| 0.2005 | 8.0 | 2400 | 0.1282 | 0.9547 |
| 0.1737 | 9.0 | 2700 | 0.1129 | 0.9597 |
| 0.1468 | 10.0 | 3000 | 0.1058 | 0.9623 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|