kaanyvvz commited on
Commit
c6db2df
1 Parent(s): 3928bc0

Model save

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/dinov2-base
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: ky-finetuned-skindiseaseicthuawei32
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: imagefolder
19
+ type: imagefolder
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9622508792497069
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # ky-finetuned-skindiseaseicthuawei32
33
+
34
+ This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.1058
37
+ - Accuracy: 0.9623
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 32
58
+ - eval_batch_size: 32
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 4
61
+ - total_train_batch_size: 128
62
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 10
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 1.3894 | 1.0 | 300 | 0.6160 | 0.8061 |
72
+ | 0.6543 | 2.0 | 600 | 0.4378 | 0.8635 |
73
+ | 0.471 | 3.0 | 900 | 0.2566 | 0.9161 |
74
+ | 0.3853 | 4.0 | 1200 | 0.2498 | 0.9135 |
75
+ | 0.3225 | 5.0 | 1500 | 0.2157 | 0.9290 |
76
+ | 0.2769 | 6.0 | 1800 | 0.1747 | 0.9407 |
77
+ | 0.2364 | 7.0 | 2100 | 0.1502 | 0.9487 |
78
+ | 0.2005 | 8.0 | 2400 | 0.1282 | 0.9547 |
79
+ | 0.1737 | 9.0 | 2700 | 0.1129 | 0.9597 |
80
+ | 0.1468 | 10.0 | 3000 | 0.1058 | 0.9623 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.47.0
86
+ - Pytorch 2.5.1+cu121
87
+ - Datasets 3.2.0
88
+ - Tokenizers 0.21.0