vicuna-adv-robust-ul15-sft-full

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6864

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 512
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss
1.0543 0.61 15 1.0329
0.9704 1.61 30 1.0141
0.9103 2.61 45 1.0125
0.8485 3.61 60 1.0221
0.785 4.61 75 1.0448
0.7207 5.61 90 1.0821
0.6444 6.61 105 1.1344
0.5673 7.61 120 1.1993
0.4883 8.61 135 1.2800
0.4137 9.61 150 1.3778
0.345 10.61 165 1.4092
0.3022 11.61 180 1.5371
0.2649 12.61 195 1.5054
0.2272 13.61 210 1.5542
0.1929 14.61 225 1.6869

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0a0+32f93b1
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
2
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.