Edit model card

介绍

tf版本

https://github.com/ZhuiyiTechnology/roformer-v2

pytorch版本+tf2.0版本

https://github.com/JunnYu/RoFormer_pytorch

安装

  • pip install roformer==0.4.3

评测对比

CLUE-dev榜单分类任务结果,base+large版本。

iflytek tnews afqmc cmnli ocnli wsc csl
BERT 60.06 56.80 72.41 79.56 73.93 78.62 83.93
RoBERTa 60.64 58.06 74.05 81.24 76.00 87.50 84.50
RoFormer 60.91 57.54 73.52 80.92 76.07 86.84 84.63
RoFormerV2* 60.87 56.54 72.75 80.34 75.36 80.92 84.67
GAU-α 61.41 57.76 74.17 81.82 75.86 79.93 85.67
RoFormer-pytorch(本仓库代码) 60.60 57.51 74.44 80.79 75.67 86.84 84.77
RoFormerV2-pytorch(本仓库代码) 62.87 59.03 76.20 80.85 79.73 87.82 91.87
GAU-α-pytorch(Adafactor) 61.18 57.52 73.42 80.91 75.69 80.59 85.5
GAU-α-pytorch(AdamW wd0.01 warmup0.1) 60.68 57.95 73.08 81.02 75.36 81.25 83.93
RoFormerV2-large-pytorch(本仓库代码) 61.75 59.21 76.14 82.35 81.73 91.45 91.5
Chinesebert-large-pytorch 61.25 58.67 74.70 82.65 79.63 87.83 84.97

CLUE-1.0-test榜单分类任务结果,base+large版本。

iflytek tnews afqmc cmnli ocnli wsc csl
RoFormer-pytorch(本仓库代码) 59.54 57.34 74.46 80.23 73.67 80.69 84.57
RoFormerV2-pytorch(本仓库代码) 63.15 58.24 75.42 80.59 74.17 83.79 83.73
GAU-α-pytorch(Adafactor) 61.38 57.08 74.05 80.37 73.53 74.83 85.6
GAU-α-pytorch(AdamW wd0.01 warmup0.1) 60.54 57.67 72.44 80.32 72.97 76.55 84.13
RoFormerV2-large-pytorch(本仓库代码) 61.85 59.13 76.38 80.97 76.23 85.86 84.33
Chinesebert-large-pytorch 61.54 58.57 74.8 81.94 76.93 79.66 85.1

注:

  • 其中RoFormerV2*表示的是未进行多任务学习的RoFormerV2模型,该模型苏神并未开源,感谢苏神的提醒。
  • 其中不带有pytorch后缀结果都是从GAU-alpha仓库复制过来的。
  • 其中带有pytorch后缀的结果都是自己训练得出的。
  • 苏神代码中拿了cls标签后直接进行了分类,而本仓库使用了如下的分类头,多了2个dropout,1个dense,1个relu激活。
class RoFormerClassificationHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

        self.config = config

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = ACT2FN[self.config.hidden_act](x) # 这里是relu
        x = self.dropout(x)
        x = self.out_proj(x)
        return x

pytorch & tf2.0使用

import torch
import tensorflow as tf
from transformers import BertTokenizer
from roformer import RoFormerForMaskedLM, TFRoFormerForMaskedLM

text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_v2_chinese_char_base")
pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_v2_chinese_char_base")
tf_model = TFRoFormerForMaskedLM.from_pretrained(
    "junnyu/roformer_v2_chinese_char_base", from_pt=True
)
pt_inputs = tokenizer(text, return_tensors="pt")
tf_inputs = tokenizer(text, return_tensors="tf")
# pytorch
with torch.no_grad():
    pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
    if id == tokenizer.mask_token_id:
        tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1])
        pt_outputs_sentence += "[" + "||".join(tokens) + "]"
    else:
        pt_outputs_sentence += "".join(
            tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
        )
print(pt_outputs_sentence)
# tf
tf_outputs = tf_model(**tf_inputs, training=False).logits[0]
tf_outputs_sentence = "tf: "
for i, id in enumerate(tokenizer.encode(text)):
    if id == tokenizer.mask_token_id:
        tokens = tokenizer.convert_ids_to_tokens(tf.math.top_k(tf_outputs[i], k=5)[1])
        tf_outputs_sentence += "[" + "||".join(tokens) + "]"
    else:
        tf_outputs_sentence += "".join(
            tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)
        )
print(tf_outputs_sentence)
# small
# pytorch: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。
# tf: 今天[的||,||是||很||也]很好,我[要||会||是||想||在]去公园玩。
# base
# pytorch: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。
# tf: 今天[我||天||晴||园||玩]很好,我[想||要||会||就||带]去公园玩。
# large
# pytorch: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。
# tf: 今天[天||气||我||空||阳]很好,我[又||想||会||就||爱]去公园玩。

引用

Bibtex:

@misc{su2021roformer,
      title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, 
      author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
      year={2021},
      eprint={2104.09864},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@techreport{roformerv2,
  title={RoFormerV2: A Faster and Better RoFormer - ZhuiyiAI},
  author={Jianlin Su, Shengfeng Pan, Bo Wen, Yunfeng Liu},
  year={2022},
  url="https://github.com/ZhuiyiTechnology/roformer-v2",
}
Downloads last month
60
Inference Examples
Inference API (serverless) has been turned off for this model.