Native diffusers textual embeddings loading
#2
by
multimodalart
HF staff
- opened
- handler.py +7 -10
handler.py
CHANGED
@@ -5,7 +5,7 @@ from huggingface_hub import hf_hub_download
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
-
from
|
9 |
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -24,15 +24,14 @@ class EndpointHandler:
|
|
24 |
|
25 |
self.pipe.load_lora_weights("SvenN/sdxl-emoji", weight_name="lora.safetensors")
|
26 |
self.pipe.fuse_lora()
|
27 |
-
|
28 |
-
text_encoders = [self.pipe.text_encoder, self.pipe.text_encoder_2]
|
29 |
-
tokenizers = [self.pipe.tokenizer, self.pipe.tokenizer_2]
|
30 |
|
31 |
embedding_path = hf_hub_download(
|
32 |
repo_id="SvenN/sdxl-emoji", filename="embeddings.pti", repo_type="model"
|
33 |
)
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
38 |
"""
|
@@ -45,11 +44,9 @@ class EndpointHandler:
|
|
45 |
inputs = data.pop("inputs", data)
|
46 |
|
47 |
# Automatically add trigger tokens to the beginning of the prompt
|
48 |
-
full_prompt = f"A <s0><s1> emoji {inputs}"
|
49 |
images = self.pipe(
|
50 |
-
|
51 |
-
|
52 |
-
num_inference_steps=25
|
53 |
).images
|
54 |
image = images[0]
|
55 |
|
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
+
from safetensors.torch import load_file
|
9 |
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
24 |
|
25 |
self.pipe.load_lora_weights("SvenN/sdxl-emoji", weight_name="lora.safetensors")
|
26 |
self.pipe.fuse_lora()
|
|
|
|
|
|
|
27 |
|
28 |
embedding_path = hf_hub_download(
|
29 |
repo_id="SvenN/sdxl-emoji", filename="embeddings.pti", repo_type="model"
|
30 |
)
|
31 |
+
state_dict = load_file(embedding_path)
|
32 |
+
|
33 |
+
self.pipe.load_textual_inversion(state_dict["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=self.pipe.text_encoder, tokenizer=self.pipe.tokenizer)
|
34 |
+
self.pipe.load_textual_inversion(state_dict["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=self.pipe.text_encoder_2, tokenizer=self.pipe.tokenizer_2)
|
35 |
|
36 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
37 |
"""
|
|
|
44 |
inputs = data.pop("inputs", data)
|
45 |
|
46 |
# Automatically add trigger tokens to the beginning of the prompt
|
|
|
47 |
images = self.pipe(
|
48 |
+
inputs,
|
49 |
+
**data['parameters']
|
|
|
50 |
).images
|
51 |
image = images[0]
|
52 |
|