Edit model card

MatSciBERT_BIOMAT_NER3

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3972
  • Precision: 0.5228
  • Recall: 0.7391
  • F1: 0.6124
  • Accuracy: 0.9437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 422 0.2590 0.4873 0.6950 0.5729 0.9387
0.2326 2.0 844 0.2598 0.5160 0.7084 0.5971 0.9428
0.0654 3.0 1266 0.3152 0.5105 0.6936 0.5881 0.9430
0.0342 4.0 1688 0.3075 0.5214 0.7208 0.6051 0.9432
0.0208 5.0 2110 0.3623 0.5109 0.7370 0.6034 0.9421
0.0126 6.0 2532 0.3504 0.5167 0.7139 0.5995 0.9428
0.0126 7.0 2954 0.3708 0.5260 0.7453 0.6167 0.9445
0.0073 8.0 3376 0.3898 0.5175 0.7294 0.6054 0.9432
0.0058 9.0 3798 0.3917 0.5185 0.7391 0.6094 0.9432
0.0039 10.0 4220 0.3972 0.5228 0.7391 0.6124 0.9437

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for judithrosell/MatSciBERT_BIOMAT_NER3