JNLPBA_PubMedBERT_NER
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:
Loss: 0.1450
Seqeval classification report: precision recall f1-score support
DNA 0.75 0.83 0.79 955 RNA 0.80 0.83 0.82 1144
cell_line 0.76 0.79 0.78 5330 cell_type 0.86 0.91 0.88 2518 protein 0.87 0.85 0.86 926
micro avg 0.80 0.83 0.81 10873 macro avg 0.81 0.84 0.82 10873
weighted avg 0.80 0.83 0.81 10873
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
---|---|---|---|---|
0.2726 | 1.0 | 582 | 0.1526 | precision recall f1-score support |
DNA 0.73 0.82 0.77 955
RNA 0.79 0.82 0.81 1144
cell_line 0.75 0.78 0.76 5330 cell_type 0.86 0.86 0.86 2518 protein 0.86 0.84 0.85 926
micro avg 0.79 0.81 0.80 10873 macro avg 0.80 0.82 0.81 10873 weighted avg 0.79 0.81 0.80 10873 | | 0.145 | 2.0 | 1164 | 0.1473 | precision recall f1-score support
DNA 0.73 0.82 0.77 955
RNA 0.85 0.78 0.81 1144
cell_line 0.77 0.78 0.78 5330 cell_type 0.85 0.92 0.88 2518 protein 0.88 0.83 0.85 926
micro avg 0.80 0.82 0.81 10873 macro avg 0.81 0.83 0.82 10873 weighted avg 0.80 0.82 0.81 10873 | | 0.1276 | 3.0 | 1746 | 0.1450 | precision recall f1-score support
DNA 0.75 0.83 0.79 955
RNA 0.80 0.83 0.82 1144
cell_line 0.76 0.79 0.78 5330 cell_type 0.86 0.91 0.88 2518 protein 0.87 0.85 0.86 926
micro avg 0.80 0.83 0.81 10873 macro avg 0.81 0.84 0.82 10873 weighted avg 0.80 0.83 0.81 10873 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 9