BGE base Fast-DDS summaries
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("juanlofer/bge-base-fastdds-summaries-20epochs-666seed")
# Run inference
sentences = [
'The transport layer provides communication services between DDS entities, using UDPv4, UDPv6, TCPv4, TCPv6, and SHM transports.',
'* **TCPv4**: TCP communication over IPv4 (see TCP Transport).',
'The following table shows the supported primitive types and their\ncorresponding "TypeKind". The "TypeKind" is used to query the\nDynamicTypeBuilderFactory for the specific primitive DynamicType.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3341 |
cosine_accuracy@3 | 0.4455 |
cosine_accuracy@5 | 0.5035 |
cosine_accuracy@10 | 0.5661 |
cosine_precision@1 | 0.3341 |
cosine_precision@3 | 0.1485 |
cosine_precision@5 | 0.1007 |
cosine_precision@10 | 0.0566 |
cosine_recall@1 | 0.3341 |
cosine_recall@3 | 0.4455 |
cosine_recall@5 | 0.5035 |
cosine_recall@10 | 0.5661 |
cosine_ndcg@10 | 0.4437 |
cosine_mrr@10 | 0.4054 |
cosine_map@100 | 0.416 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3364 |
cosine_accuracy@3 | 0.4478 |
cosine_accuracy@5 | 0.4965 |
cosine_accuracy@10 | 0.5777 |
cosine_precision@1 | 0.3364 |
cosine_precision@3 | 0.1493 |
cosine_precision@5 | 0.0993 |
cosine_precision@10 | 0.0578 |
cosine_recall@1 | 0.3364 |
cosine_recall@3 | 0.4478 |
cosine_recall@5 | 0.4965 |
cosine_recall@10 | 0.5777 |
cosine_ndcg@10 | 0.4463 |
cosine_mrr@10 | 0.4057 |
cosine_map@100 | 0.4154 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3271 |
cosine_accuracy@3 | 0.4478 |
cosine_accuracy@5 | 0.4988 |
cosine_accuracy@10 | 0.5754 |
cosine_precision@1 | 0.3271 |
cosine_precision@3 | 0.1493 |
cosine_precision@5 | 0.0998 |
cosine_precision@10 | 0.0575 |
cosine_recall@1 | 0.3271 |
cosine_recall@3 | 0.4478 |
cosine_recall@5 | 0.4988 |
cosine_recall@10 | 0.5754 |
cosine_ndcg@10 | 0.4414 |
cosine_mrr@10 | 0.3997 |
cosine_map@100 | 0.4105 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3155 |
cosine_accuracy@3 | 0.4292 |
cosine_accuracy@5 | 0.4803 |
cosine_accuracy@10 | 0.5754 |
cosine_precision@1 | 0.3155 |
cosine_precision@3 | 0.1431 |
cosine_precision@5 | 0.0961 |
cosine_precision@10 | 0.0575 |
cosine_recall@1 | 0.3155 |
cosine_recall@3 | 0.4292 |
cosine_recall@5 | 0.4803 |
cosine_recall@10 | 0.5754 |
cosine_ndcg@10 | 0.4328 |
cosine_mrr@10 | 0.389 |
cosine_map@100 | 0.3994 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.2854 |
cosine_accuracy@3 | 0.4153 |
cosine_accuracy@5 | 0.4687 |
cosine_accuracy@10 | 0.5568 |
cosine_precision@1 | 0.2854 |
cosine_precision@3 | 0.1384 |
cosine_precision@5 | 0.0937 |
cosine_precision@10 | 0.0557 |
cosine_recall@1 | 0.2854 |
cosine_recall@3 | 0.4153 |
cosine_recall@5 | 0.4687 |
cosine_recall@10 | 0.5568 |
cosine_ndcg@10 | 0.4098 |
cosine_mrr@10 | 0.3641 |
cosine_map@100 | 0.3744 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 20lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 20max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0.6584 | 10 | 5.9441 | - | - | - | - | - |
0.9877 | 15 | - | 0.3686 | 0.3792 | 0.3819 | 0.3414 | 0.3795 |
1.3128 | 20 | 4.7953 | - | - | - | - | - |
1.9712 | 30 | 3.77 | 0.3854 | 0.3963 | 0.3962 | 0.3682 | 0.3995 |
2.6255 | 40 | 2.9211 | - | - | - | - | - |
2.9547 | 45 | - | 0.3866 | 0.3919 | 0.3958 | 0.3759 | 0.3963 |
3.2798 | 50 | 2.4548 | - | - | - | - | - |
3.9383 | 60 | 2.0513 | - | - | - | - | - |
4.0041 | 61 | - | 0.3808 | 0.4018 | 0.3980 | 0.3647 | 0.3962 |
4.5926 | 70 | 1.5898 | - | - | - | - | - |
4.9877 | 76 | - | 0.3829 | 0.4029 | 0.4035 | 0.3625 | 0.4014 |
5.2469 | 80 | 1.4677 | - | - | - | - | - |
5.9053 | 90 | 1.1974 | - | - | - | - | - |
5.9712 | 91 | - | 0.3918 | 0.4006 | 0.4041 | 0.3654 | 0.4033 |
6.5597 | 100 | 0.9285 | - | - | - | - | - |
6.9547 | 106 | - | 0.3914 | 0.4019 | 0.4033 | 0.3678 | 0.4014 |
7.2140 | 110 | 0.9214 | - | - | - | - | - |
7.8724 | 120 | 0.8141 | - | - | - | - | - |
8.0041 | 122 | - | 0.3914 | 0.3993 | 0.4071 | 0.3670 | 0.4027 |
8.5267 | 130 | 0.6706 | - | - | - | - | - |
8.9877 | 137 | - | 0.3903 | 0.4033 | 0.4060 | 0.3721 | 0.4060 |
9.1811 | 140 | 0.6388 | - | - | - | - | - |
9.8395 | 150 | 0.5466 | - | - | - | - | - |
9.9712 | 152 | - | 0.3915 | 0.4020 | 0.4079 | 0.3673 | 0.4046 |
10.4938 | 160 | 0.466 | - | - | - | - | - |
10.9547 | 167 | - | 0.3963 | 0.4069 | 0.4112 | 0.3697 | 0.4078 |
11.1481 | 170 | 0.4709 | - | - | - | - | - |
11.8066 | 180 | 0.437 | - | - | - | - | - |
12.0041 | 183 | - | 0.4003 | 0.4051 | 0.4096 | 0.3701 | 0.4059 |
12.4609 | 190 | 0.3678 | - | - | - | - | - |
12.9877 | 198 | - | 0.3976 | 0.4075 | 0.4088 | 0.3713 | 0.4080 |
13.1152 | 200 | 0.3944 | - | - | - | - | - |
13.7737 | 210 | 0.361 | - | - | - | - | - |
13.9712 | 213 | - | 0.3966 | 0.4091 | 0.4096 | 0.3724 | 0.4107 |
14.4280 | 220 | 0.2977 | - | - | - | - | - |
14.9547 | 228 | - | 0.3979 | 0.4102 | 0.4149 | 0.3744 | 0.4143 |
15.0823 | 230 | 0.3306 | - | - | - | - | - |
15.7407 | 240 | 0.3075 | - | - | - | - | - |
16.0041 | 244 | - | 0.3991 | 0.4102 | 0.4156 | 0.3726 | 0.4148 |
16.3951 | 250 | 0.2777 | - | - | - | - | - |
16.9877 | 259 | - | 0.3990 | 0.4101 | 0.4154 | 0.3743 | 0.4167 |
17.0494 | 260 | 0.3044 | - | - | - | - | - |
17.7078 | 270 | 0.2885 | - | - | - | - | - |
17.9712 | 274 | - | 0.3991 | 0.4099 | 0.4153 | 0.3746 | 0.4167 |
18.3621 | 280 | 0.2862 | - | - | - | - | - |
18.9547 | 289 | - | 0.3994 | 0.4105 | 0.4154 | 0.3743 | 0.4156 |
19.0165 | 290 | 0.2974 | - | - | - | - | - |
19.6749 | 300 | 0.2648 | 0.3994 | 0.4105 | 0.4154 | 0.3744 | 0.4160 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for juanlofer/bge-base-fastdds-summaries-20epochs-666seed
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.334
- Cosine Accuracy@3 on dim 768self-reported0.445
- Cosine Accuracy@5 on dim 768self-reported0.503
- Cosine Accuracy@10 on dim 768self-reported0.566
- Cosine Precision@1 on dim 768self-reported0.334
- Cosine Precision@3 on dim 768self-reported0.148
- Cosine Precision@5 on dim 768self-reported0.101
- Cosine Precision@10 on dim 768self-reported0.057
- Cosine Recall@1 on dim 768self-reported0.334
- Cosine Recall@3 on dim 768self-reported0.445