Edit model card

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1000")
# Run inference
sentences = [
    '(1) Joint: join with step 2, where the few-shot examples are structured as (response, verification questions, verification answers); The drawback is that the original response is in the context, so the model may repeat similar hallucination.\n(2) 2-step: separate the verification planning and execution steps, such as the original response doesn’t impact\n(3) Factored: each verification question is answered separately. Say, if a long-form base generation results in multiple verification questions, we would answer each question one-by-one.\n(4) Factor+revise: adding a “cross-checking” step after factored verification execution, conditioned on both the baseline response and the verification question and answer. It detects inconsistency.\n\n\nFinal output: Generate the final, refined output. The output gets revised at this step if any inconsistency is discovered.',
    "In what ways does the 'Factor+revise' method enhance the reliability of responses when compared to the 'Joint' and '2-step' methods used for cross-checking?",
    'What obstacles arise when depending on the pre-training dataset in the context of extrinsic hallucination affecting model outputs?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8802
cosine_accuracy@3 0.9844
cosine_accuracy@5 0.9948
cosine_accuracy@10 0.9948
cosine_precision@1 0.8802
cosine_precision@3 0.3281
cosine_precision@5 0.199
cosine_precision@10 0.0995
cosine_recall@1 0.8802
cosine_recall@3 0.9844
cosine_recall@5 0.9948
cosine_recall@10 0.9948
cosine_ndcg@10 0.9495
cosine_mrr@10 0.9338
cosine_map@100 0.9342

Information Retrieval

Metric Value
cosine_accuracy@1 0.8854
cosine_accuracy@3 0.9844
cosine_accuracy@5 0.9948
cosine_accuracy@10 1.0
cosine_precision@1 0.8854
cosine_precision@3 0.3281
cosine_precision@5 0.199
cosine_precision@10 0.1
cosine_recall@1 0.8854
cosine_recall@3 0.9844
cosine_recall@5 0.9948
cosine_recall@10 1.0
cosine_ndcg@10 0.9537
cosine_mrr@10 0.9378
cosine_map@100 0.9378

Information Retrieval

Metric Value
cosine_accuracy@1 0.901
cosine_accuracy@3 0.9844
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.901
cosine_precision@3 0.3281
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.901
cosine_recall@3 0.9844
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9588
cosine_mrr@10 0.9446
cosine_map@100 0.9446

Information Retrieval

Metric Value
cosine_accuracy@1 0.9062
cosine_accuracy@3 0.9844
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.9062
cosine_precision@3 0.3281
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9062
cosine_recall@3 0.9844
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9609
cosine_mrr@10 0.9475
cosine_map@100 0.9475

Information Retrieval

Metric Value
cosine_accuracy@1 0.8906
cosine_accuracy@3 0.9844
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.8906
cosine_precision@3 0.3281
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.8906
cosine_recall@3 0.9844
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9551
cosine_mrr@10 0.9397
cosine_map@100 0.9397

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.04 5 4.9678 - - - - -
0.08 10 4.6482 - - - - -
0.12 15 5.0735 - - - - -
0.16 20 4.0336 - - - - -
0.2 25 3.7572 - - - - -
0.24 30 4.3054 - - - - -
0.28 35 2.6705 - - - - -
0.32 40 3.1929 - - - - -
0.36 45 3.1139 - - - - -
0.4 50 2.5219 - - - - -
0.44 55 3.1847 - - - - -
0.48 60 2.2306 - - - - -
0.52 65 2.251 - - - - -
0.56 70 2.2432 - - - - -
0.6 75 2.7462 - - - - -
0.64 80 2.9992 - - - - -
0.68 85 2.338 - - - - -
0.72 90 2.0169 - - - - -
0.76 95 1.257 - - - - -
0.8 100 1.5015 - - - - -
0.84 105 1.9198 - - - - -
0.88 110 2.2154 - - - - -
0.92 115 2.4026 - - - - -
0.96 120 1.911 - - - - -
1.0 125 2.079 0.9151 0.9098 0.9220 0.8788 0.9251
1.04 130 1.4704 - - - - -
1.08 135 0.7323 - - - - -
1.12 140 0.6308 - - - - -
1.16 145 0.4655 - - - - -
1.2 150 1.0186 - - - - -
1.24 155 1.1408 - - - - -
1.28 160 1.965 - - - - -
1.32 165 1.5987 - - - - -
1.3600 170 3.288 - - - - -
1.4 175 1.632 - - - - -
1.44 180 1.0376 - - - - -
1.48 185 0.9466 - - - - -
1.52 190 1.0106 - - - - -
1.56 195 1.4875 - - - - -
1.6 200 1.314 - - - - -
1.6400 205 1.3022 - - - - -
1.6800 210 1.5312 - - - - -
1.72 215 1.7982 - - - - -
1.76 220 1.7962 - - - - -
1.8 225 1.5788 - - - - -
1.8400 230 1.152 - - - - -
1.88 235 2.0556 - - - - -
1.92 240 1.3165 - - - - -
1.96 245 0.6941 - - - - -
2.0 250 1.2239 0.9404 0.944 0.9427 0.9327 0.9424
2.04 255 1.0423 - - - - -
2.08 260 0.8893 - - - - -
2.12 265 1.2859 - - - - -
2.16 270 1.4505 - - - - -
2.2 275 0.2728 - - - - -
2.24 280 0.6588 - - - - -
2.2800 285 0.8014 - - - - -
2.32 290 0.3053 - - - - -
2.36 295 1.4289 - - - - -
2.4 300 1.1458 - - - - -
2.44 305 0.6987 - - - - -
2.48 310 1.3389 - - - - -
2.52 315 1.2991 - - - - -
2.56 320 1.8088 - - - - -
2.6 325 0.4242 - - - - -
2.64 330 1.5873 - - - - -
2.68 335 1.3873 - - - - -
2.7200 340 1.4297 - - - - -
2.76 345 2.0637 - - - - -
2.8 350 1.1252 - - - - -
2.84 355 0.367 - - - - -
2.88 360 1.7606 - - - - -
2.92 365 1.196 - - - - -
2.96 370 1.8827 - - - - -
3.0 375 0.6822 0.9494 0.9479 0.9336 0.9414 0.9405
3.04 380 0.4954 - - - - -
3.08 385 0.1717 - - - - -
3.12 390 0.7435 - - - - -
3.16 395 1.4323 - - - - -
3.2 400 1.1207 - - - - -
3.24 405 1.9009 - - - - -
3.2800 410 1.6706 - - - - -
3.32 415 0.8378 - - - - -
3.36 420 1.0911 - - - - -
3.4 425 0.6565 - - - - -
3.44 430 1.0302 - - - - -
3.48 435 0.6425 - - - - -
3.52 440 1.1472 - - - - -
3.56 445 1.996 - - - - -
3.6 450 1.5308 - - - - -
3.64 455 0.7427 - - - - -
3.68 460 1.4596 - - - - -
3.7200 465 1.1984 - - - - -
3.76 470 0.7601 - - - - -
3.8 475 1.3544 - - - - -
3.84 480 1.6655 - - - - -
3.88 485 1.2596 - - - - -
3.92 490 0.9451 - - - - -
3.96 495 0.7079 - - - - -
4.0 500 1.3471 0.9453 0.9446 0.9404 0.9371 0.9335
4.04 505 0.4583 - - - - -
4.08 510 1.288 - - - - -
4.12 515 1.6946 - - - - -
4.16 520 1.1239 - - - - -
4.2 525 1.1026 - - - - -
4.24 530 1.4121 - - - - -
4.28 535 1.7113 - - - - -
4.32 540 0.8389 - - - - -
4.36 545 0.3117 - - - - -
4.4 550 0.3144 - - - - -
4.44 555 1.4694 - - - - -
4.48 560 1.3233 - - - - -
4.52 565 0.792 - - - - -
4.5600 570 0.4881 - - - - -
4.6 575 0.5097 - - - - -
4.64 580 1.6377 - - - - -
4.68 585 0.7273 - - - - -
4.72 590 1.5464 - - - - -
4.76 595 1.4392 - - - - -
4.8 600 1.4384 - - - - -
4.84 605 0.6375 - - - - -
4.88 610 1.0528 - - - - -
4.92 615 0.0276 - - - - -
4.96 620 0.9604 - - - - -
5.0 625 0.7219 0.9475 0.9446 0.9378 0.9397 0.9342
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for joshuapb/fine-tuned-matryoshka-1000

Finetuned
(259)
this model

Evaluation results