dit-base_tobacco_crl_allv2
This model is a fine-tuned version of jordyvl/dit-base_tobacco on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3885
- Accuracy: 0.945
- Brier Loss: 0.1018
- Nll: 0.7205
- F1 Micro: 0.945
- F1 Macro: 0.9429
- Ece: 0.0554
- Aurc: 0.0107
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 0.96 | 3 | 0.3286 | 0.925 | 0.1161 | 1.0901 | 0.925 | 0.9187 | 0.0807 | 0.0113 |
No log | 1.96 | 6 | 0.3344 | 0.93 | 0.1123 | 1.0906 | 0.93 | 0.9219 | 0.0760 | 0.0120 |
No log | 2.96 | 9 | 0.3363 | 0.935 | 0.1092 | 1.0909 | 0.935 | 0.9319 | 0.0711 | 0.0135 |
No log | 3.96 | 12 | 0.3530 | 0.935 | 0.1135 | 1.0883 | 0.935 | 0.9320 | 0.0753 | 0.0158 |
No log | 4.96 | 15 | 0.3673 | 0.93 | 0.1170 | 1.0778 | 0.93 | 0.9247 | 0.0811 | 0.0162 |
No log | 5.96 | 18 | 0.3583 | 0.93 | 0.1167 | 1.0706 | 0.93 | 0.9247 | 0.0708 | 0.0159 |
No log | 6.96 | 21 | 0.3469 | 0.93 | 0.1121 | 1.0675 | 0.93 | 0.9247 | 0.0783 | 0.0148 |
No log | 7.96 | 24 | 0.3357 | 0.935 | 0.1071 | 1.0654 | 0.935 | 0.9279 | 0.0724 | 0.0136 |
No log | 8.96 | 27 | 0.3329 | 0.935 | 0.1048 | 1.0488 | 0.935 | 0.9279 | 0.0615 | 0.0127 |
No log | 9.96 | 30 | 0.3354 | 0.94 | 0.1027 | 1.0178 | 0.94 | 0.9391 | 0.0636 | 0.0130 |
No log | 10.96 | 33 | 0.3350 | 0.94 | 0.1018 | 1.0054 | 0.94 | 0.9418 | 0.0616 | 0.0136 |
No log | 11.96 | 36 | 0.3342 | 0.94 | 0.1012 | 1.0160 | 0.94 | 0.9418 | 0.0632 | 0.0133 |
No log | 12.96 | 39 | 0.3341 | 0.935 | 0.1002 | 1.0132 | 0.935 | 0.9318 | 0.0692 | 0.0135 |
No log | 13.96 | 42 | 0.3427 | 0.93 | 0.1039 | 1.0032 | 0.93 | 0.9275 | 0.0644 | 0.0137 |
No log | 14.96 | 45 | 0.3393 | 0.945 | 0.0985 | 0.9986 | 0.945 | 0.9406 | 0.0581 | 0.0122 |
No log | 15.96 | 48 | 0.3304 | 0.94 | 0.0995 | 0.9934 | 0.94 | 0.9390 | 0.0575 | 0.0124 |
No log | 16.96 | 51 | 0.3372 | 0.94 | 0.1010 | 0.9796 | 0.94 | 0.9390 | 0.0597 | 0.0127 |
No log | 17.96 | 54 | 0.3399 | 0.94 | 0.1023 | 0.9591 | 0.94 | 0.9459 | 0.0603 | 0.0123 |
No log | 18.96 | 57 | 0.3443 | 0.94 | 0.1044 | 0.9473 | 0.94 | 0.9459 | 0.0588 | 0.0122 |
No log | 19.96 | 60 | 0.3491 | 0.94 | 0.1064 | 0.9401 | 0.94 | 0.9398 | 0.0617 | 0.0122 |
No log | 20.96 | 63 | 0.3510 | 0.94 | 0.1081 | 0.9288 | 0.94 | 0.9398 | 0.0681 | 0.0131 |
No log | 21.96 | 66 | 0.3485 | 0.94 | 0.1074 | 0.9111 | 0.94 | 0.9398 | 0.0628 | 0.0132 |
No log | 22.96 | 69 | 0.3481 | 0.935 | 0.1056 | 0.8993 | 0.935 | 0.9382 | 0.0616 | 0.0132 |
No log | 23.96 | 72 | 0.3605 | 0.935 | 0.1131 | 0.9013 | 0.935 | 0.9378 | 0.0684 | 0.0120 |
No log | 24.96 | 75 | 0.3738 | 0.935 | 0.1159 | 0.9113 | 0.935 | 0.9377 | 0.0683 | 0.0117 |
No log | 25.96 | 78 | 0.3657 | 0.935 | 0.1108 | 0.8932 | 0.935 | 0.9394 | 0.0690 | 0.0124 |
No log | 26.96 | 81 | 0.3511 | 0.94 | 0.1060 | 0.8761 | 0.94 | 0.9446 | 0.0563 | 0.0120 |
No log | 27.96 | 84 | 0.3375 | 0.94 | 0.1025 | 0.8662 | 0.94 | 0.9446 | 0.0602 | 0.0108 |
No log | 28.96 | 87 | 0.3369 | 0.94 | 0.1019 | 0.8654 | 0.94 | 0.9446 | 0.0558 | 0.0090 |
No log | 29.96 | 90 | 0.3423 | 0.94 | 0.1055 | 0.8602 | 0.94 | 0.9446 | 0.0610 | 0.0076 |
No log | 30.96 | 93 | 0.3458 | 0.945 | 0.1065 | 0.8525 | 0.945 | 0.9474 | 0.0605 | 0.0078 |
No log | 31.96 | 96 | 0.3436 | 0.945 | 0.1035 | 0.8390 | 0.945 | 0.9490 | 0.0591 | 0.0082 |
No log | 32.96 | 99 | 0.3436 | 0.94 | 0.1025 | 0.8294 | 0.94 | 0.9397 | 0.0574 | 0.0086 |
No log | 33.96 | 102 | 0.3481 | 0.94 | 0.0990 | 0.8225 | 0.94 | 0.9398 | 0.0579 | 0.0102 |
No log | 34.96 | 105 | 0.3519 | 0.945 | 0.0965 | 0.8203 | 0.945 | 0.9491 | 0.0576 | 0.0109 |
No log | 35.96 | 108 | 0.3551 | 0.945 | 0.0939 | 0.8213 | 0.945 | 0.9491 | 0.0547 | 0.0116 |
No log | 36.96 | 111 | 0.3611 | 0.95 | 0.0945 | 0.8193 | 0.9500 | 0.9519 | 0.0556 | 0.0117 |
No log | 37.96 | 114 | 0.3678 | 0.94 | 0.1037 | 0.8166 | 0.94 | 0.9446 | 0.0591 | 0.0116 |
No log | 38.96 | 117 | 0.3740 | 0.94 | 0.1086 | 0.8226 | 0.94 | 0.9446 | 0.0588 | 0.0112 |
No log | 39.96 | 120 | 0.3754 | 0.94 | 0.1106 | 0.8328 | 0.94 | 0.9446 | 0.0631 | 0.0114 |
No log | 40.96 | 123 | 0.3699 | 0.94 | 0.1097 | 0.8241 | 0.94 | 0.9446 | 0.0584 | 0.0116 |
No log | 41.96 | 126 | 0.3606 | 0.94 | 0.1051 | 0.8010 | 0.94 | 0.9446 | 0.0550 | 0.0122 |
No log | 42.96 | 129 | 0.3548 | 0.94 | 0.0970 | 0.7939 | 0.94 | 0.9447 | 0.0603 | 0.0130 |
No log | 43.96 | 132 | 0.3533 | 0.95 | 0.0948 | 0.7902 | 0.9500 | 0.9522 | 0.0589 | 0.0131 |
No log | 44.96 | 135 | 0.3588 | 0.945 | 0.0973 | 0.7818 | 0.945 | 0.9478 | 0.0540 | 0.0128 |
No log | 45.96 | 138 | 0.3634 | 0.945 | 0.1011 | 0.7802 | 0.945 | 0.9478 | 0.0566 | 0.0124 |
No log | 46.96 | 141 | 0.3642 | 0.945 | 0.1018 | 0.7813 | 0.945 | 0.9478 | 0.0564 | 0.0108 |
No log | 47.96 | 144 | 0.3624 | 0.945 | 0.1018 | 0.7858 | 0.945 | 0.9478 | 0.0568 | 0.0104 |
No log | 48.96 | 147 | 0.3653 | 0.945 | 0.1011 | 0.7949 | 0.945 | 0.9478 | 0.0570 | 0.0110 |
No log | 49.96 | 150 | 0.3697 | 0.945 | 0.1022 | 0.8296 | 0.945 | 0.9478 | 0.0565 | 0.0110 |
No log | 50.96 | 153 | 0.3705 | 0.945 | 0.1025 | 0.8677 | 0.945 | 0.9478 | 0.0558 | 0.0111 |
No log | 51.96 | 156 | 0.3753 | 0.945 | 0.1042 | 0.7933 | 0.945 | 0.9478 | 0.0553 | 0.0106 |
No log | 52.96 | 159 | 0.3763 | 0.945 | 0.1038 | 0.7869 | 0.945 | 0.9478 | 0.0580 | 0.0112 |
No log | 53.96 | 162 | 0.3735 | 0.95 | 0.1007 | 0.7751 | 0.9500 | 0.9522 | 0.0551 | 0.0114 |
No log | 54.96 | 165 | 0.3713 | 0.95 | 0.0995 | 0.7660 | 0.9500 | 0.9522 | 0.0551 | 0.0112 |
No log | 55.96 | 168 | 0.3709 | 0.95 | 0.0985 | 0.7592 | 0.9500 | 0.9522 | 0.0540 | 0.0108 |
No log | 56.96 | 171 | 0.3747 | 0.95 | 0.0985 | 0.7580 | 0.9500 | 0.9522 | 0.0530 | 0.0119 |
No log | 57.96 | 174 | 0.3793 | 0.95 | 0.0992 | 0.7567 | 0.9500 | 0.9522 | 0.0532 | 0.0121 |
No log | 58.96 | 177 | 0.3802 | 0.95 | 0.0992 | 0.7519 | 0.9500 | 0.9522 | 0.0540 | 0.0115 |
No log | 59.96 | 180 | 0.3815 | 0.95 | 0.1007 | 0.7485 | 0.9500 | 0.9522 | 0.0545 | 0.0108 |
No log | 60.96 | 183 | 0.3873 | 0.945 | 0.1069 | 0.7489 | 0.945 | 0.9478 | 0.0572 | 0.0098 |
No log | 61.96 | 186 | 0.3883 | 0.945 | 0.1070 | 0.7477 | 0.945 | 0.9478 | 0.0564 | 0.0097 |
No log | 62.96 | 189 | 0.3818 | 0.945 | 0.1053 | 0.7451 | 0.945 | 0.9478 | 0.0561 | 0.0096 |
No log | 63.96 | 192 | 0.3745 | 0.945 | 0.1048 | 0.7446 | 0.945 | 0.9478 | 0.0586 | 0.0101 |
No log | 64.96 | 195 | 0.3762 | 0.945 | 0.1030 | 0.8090 | 0.945 | 0.9478 | 0.0576 | 0.0103 |
No log | 65.96 | 198 | 0.3822 | 0.95 | 0.1025 | 0.8092 | 0.9500 | 0.9522 | 0.0564 | 0.0104 |
No log | 66.96 | 201 | 0.3896 | 0.95 | 0.1030 | 0.8112 | 0.9500 | 0.9522 | 0.0566 | 0.0103 |
No log | 67.96 | 204 | 0.3914 | 0.945 | 0.1036 | 0.8095 | 0.945 | 0.9490 | 0.0586 | 0.0102 |
No log | 68.96 | 207 | 0.3900 | 0.945 | 0.1043 | 0.8060 | 0.945 | 0.9490 | 0.0585 | 0.0097 |
No log | 69.96 | 210 | 0.3903 | 0.945 | 0.1059 | 0.7370 | 0.945 | 0.9490 | 0.0586 | 0.0099 |
No log | 70.96 | 213 | 0.3923 | 0.94 | 0.1069 | 0.7327 | 0.94 | 0.9446 | 0.0568 | 0.0096 |
No log | 71.96 | 216 | 0.3894 | 0.94 | 0.1070 | 0.7316 | 0.94 | 0.9446 | 0.0611 | 0.0094 |
No log | 72.96 | 219 | 0.3847 | 0.94 | 0.1053 | 0.7318 | 0.94 | 0.9446 | 0.0607 | 0.0100 |
No log | 73.96 | 222 | 0.3833 | 0.94 | 0.1043 | 0.7315 | 0.94 | 0.9446 | 0.0603 | 0.0105 |
No log | 74.96 | 225 | 0.3822 | 0.935 | 0.1041 | 0.7310 | 0.935 | 0.9353 | 0.0620 | 0.0101 |
No log | 75.96 | 228 | 0.3771 | 0.945 | 0.1026 | 0.7314 | 0.945 | 0.9429 | 0.0552 | 0.0100 |
No log | 76.96 | 231 | 0.3748 | 0.945 | 0.1014 | 0.7322 | 0.945 | 0.9429 | 0.0569 | 0.0100 |
No log | 77.96 | 234 | 0.3759 | 0.945 | 0.1010 | 0.7332 | 0.945 | 0.9429 | 0.0556 | 0.0104 |
No log | 78.96 | 237 | 0.3775 | 0.945 | 0.1009 | 0.7346 | 0.945 | 0.9429 | 0.0546 | 0.0107 |
No log | 79.96 | 240 | 0.3784 | 0.94 | 0.1012 | 0.7343 | 0.94 | 0.9398 | 0.0558 | 0.0108 |
No log | 80.96 | 243 | 0.3797 | 0.94 | 0.1013 | 0.7340 | 0.94 | 0.9398 | 0.0559 | 0.0109 |
No log | 81.96 | 246 | 0.3821 | 0.94 | 0.1012 | 0.7359 | 0.94 | 0.9398 | 0.0578 | 0.0109 |
No log | 82.96 | 249 | 0.3836 | 0.94 | 0.1011 | 0.7332 | 0.94 | 0.9398 | 0.0576 | 0.0108 |
No log | 83.96 | 252 | 0.3844 | 0.94 | 0.1009 | 0.7318 | 0.94 | 0.9398 | 0.0574 | 0.0106 |
No log | 84.96 | 255 | 0.3859 | 0.94 | 0.1009 | 0.7316 | 0.94 | 0.9398 | 0.0572 | 0.0106 |
No log | 85.96 | 258 | 0.3885 | 0.94 | 0.1012 | 0.7312 | 0.94 | 0.9398 | 0.0546 | 0.0106 |
No log | 86.96 | 261 | 0.3898 | 0.945 | 0.1015 | 0.7292 | 0.945 | 0.9429 | 0.0546 | 0.0106 |
No log | 87.96 | 264 | 0.3905 | 0.945 | 0.1018 | 0.7265 | 0.945 | 0.9429 | 0.0560 | 0.0108 |
No log | 88.96 | 267 | 0.3909 | 0.945 | 0.1020 | 0.7239 | 0.945 | 0.9429 | 0.0558 | 0.0106 |
No log | 89.96 | 270 | 0.3903 | 0.945 | 0.1018 | 0.7219 | 0.945 | 0.9429 | 0.0559 | 0.0105 |
No log | 90.96 | 273 | 0.3895 | 0.945 | 0.1017 | 0.7208 | 0.945 | 0.9429 | 0.0559 | 0.0105 |
No log | 91.96 | 276 | 0.3891 | 0.945 | 0.1017 | 0.7202 | 0.945 | 0.9429 | 0.0562 | 0.0104 |
No log | 92.96 | 279 | 0.3890 | 0.945 | 0.1017 | 0.7201 | 0.945 | 0.9429 | 0.0564 | 0.0106 |
No log | 93.96 | 282 | 0.3889 | 0.945 | 0.1018 | 0.7202 | 0.945 | 0.9429 | 0.0554 | 0.0105 |
No log | 94.96 | 285 | 0.3883 | 0.945 | 0.1016 | 0.7206 | 0.945 | 0.9429 | 0.0555 | 0.0105 |
No log | 95.96 | 288 | 0.3880 | 0.945 | 0.1016 | 0.7210 | 0.945 | 0.9429 | 0.0556 | 0.0107 |
No log | 96.96 | 291 | 0.3880 | 0.945 | 0.1016 | 0.7209 | 0.945 | 0.9429 | 0.0555 | 0.0107 |
No log | 97.96 | 294 | 0.3882 | 0.945 | 0.1017 | 0.7207 | 0.945 | 0.9429 | 0.0555 | 0.0107 |
No log | 98.96 | 297 | 0.3884 | 0.945 | 0.1017 | 0.7205 | 0.945 | 0.9429 | 0.0554 | 0.0107 |
No log | 99.96 | 300 | 0.3885 | 0.945 | 0.1018 | 0.7205 | 0.945 | 0.9429 | 0.0554 | 0.0107 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.