Edit model card

dit-base_tobacco_crl_allv2

This model is a fine-tuned version of jordyvl/dit-base_tobacco on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3885
  • Accuracy: 0.945
  • Brier Loss: 0.1018
  • Nll: 0.7205
  • F1 Micro: 0.945
  • F1 Macro: 0.9429
  • Ece: 0.0554
  • Aurc: 0.0107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 0.96 3 0.3286 0.925 0.1161 1.0901 0.925 0.9187 0.0807 0.0113
No log 1.96 6 0.3344 0.93 0.1123 1.0906 0.93 0.9219 0.0760 0.0120
No log 2.96 9 0.3363 0.935 0.1092 1.0909 0.935 0.9319 0.0711 0.0135
No log 3.96 12 0.3530 0.935 0.1135 1.0883 0.935 0.9320 0.0753 0.0158
No log 4.96 15 0.3673 0.93 0.1170 1.0778 0.93 0.9247 0.0811 0.0162
No log 5.96 18 0.3583 0.93 0.1167 1.0706 0.93 0.9247 0.0708 0.0159
No log 6.96 21 0.3469 0.93 0.1121 1.0675 0.93 0.9247 0.0783 0.0148
No log 7.96 24 0.3357 0.935 0.1071 1.0654 0.935 0.9279 0.0724 0.0136
No log 8.96 27 0.3329 0.935 0.1048 1.0488 0.935 0.9279 0.0615 0.0127
No log 9.96 30 0.3354 0.94 0.1027 1.0178 0.94 0.9391 0.0636 0.0130
No log 10.96 33 0.3350 0.94 0.1018 1.0054 0.94 0.9418 0.0616 0.0136
No log 11.96 36 0.3342 0.94 0.1012 1.0160 0.94 0.9418 0.0632 0.0133
No log 12.96 39 0.3341 0.935 0.1002 1.0132 0.935 0.9318 0.0692 0.0135
No log 13.96 42 0.3427 0.93 0.1039 1.0032 0.93 0.9275 0.0644 0.0137
No log 14.96 45 0.3393 0.945 0.0985 0.9986 0.945 0.9406 0.0581 0.0122
No log 15.96 48 0.3304 0.94 0.0995 0.9934 0.94 0.9390 0.0575 0.0124
No log 16.96 51 0.3372 0.94 0.1010 0.9796 0.94 0.9390 0.0597 0.0127
No log 17.96 54 0.3399 0.94 0.1023 0.9591 0.94 0.9459 0.0603 0.0123
No log 18.96 57 0.3443 0.94 0.1044 0.9473 0.94 0.9459 0.0588 0.0122
No log 19.96 60 0.3491 0.94 0.1064 0.9401 0.94 0.9398 0.0617 0.0122
No log 20.96 63 0.3510 0.94 0.1081 0.9288 0.94 0.9398 0.0681 0.0131
No log 21.96 66 0.3485 0.94 0.1074 0.9111 0.94 0.9398 0.0628 0.0132
No log 22.96 69 0.3481 0.935 0.1056 0.8993 0.935 0.9382 0.0616 0.0132
No log 23.96 72 0.3605 0.935 0.1131 0.9013 0.935 0.9378 0.0684 0.0120
No log 24.96 75 0.3738 0.935 0.1159 0.9113 0.935 0.9377 0.0683 0.0117
No log 25.96 78 0.3657 0.935 0.1108 0.8932 0.935 0.9394 0.0690 0.0124
No log 26.96 81 0.3511 0.94 0.1060 0.8761 0.94 0.9446 0.0563 0.0120
No log 27.96 84 0.3375 0.94 0.1025 0.8662 0.94 0.9446 0.0602 0.0108
No log 28.96 87 0.3369 0.94 0.1019 0.8654 0.94 0.9446 0.0558 0.0090
No log 29.96 90 0.3423 0.94 0.1055 0.8602 0.94 0.9446 0.0610 0.0076
No log 30.96 93 0.3458 0.945 0.1065 0.8525 0.945 0.9474 0.0605 0.0078
No log 31.96 96 0.3436 0.945 0.1035 0.8390 0.945 0.9490 0.0591 0.0082
No log 32.96 99 0.3436 0.94 0.1025 0.8294 0.94 0.9397 0.0574 0.0086
No log 33.96 102 0.3481 0.94 0.0990 0.8225 0.94 0.9398 0.0579 0.0102
No log 34.96 105 0.3519 0.945 0.0965 0.8203 0.945 0.9491 0.0576 0.0109
No log 35.96 108 0.3551 0.945 0.0939 0.8213 0.945 0.9491 0.0547 0.0116
No log 36.96 111 0.3611 0.95 0.0945 0.8193 0.9500 0.9519 0.0556 0.0117
No log 37.96 114 0.3678 0.94 0.1037 0.8166 0.94 0.9446 0.0591 0.0116
No log 38.96 117 0.3740 0.94 0.1086 0.8226 0.94 0.9446 0.0588 0.0112
No log 39.96 120 0.3754 0.94 0.1106 0.8328 0.94 0.9446 0.0631 0.0114
No log 40.96 123 0.3699 0.94 0.1097 0.8241 0.94 0.9446 0.0584 0.0116
No log 41.96 126 0.3606 0.94 0.1051 0.8010 0.94 0.9446 0.0550 0.0122
No log 42.96 129 0.3548 0.94 0.0970 0.7939 0.94 0.9447 0.0603 0.0130
No log 43.96 132 0.3533 0.95 0.0948 0.7902 0.9500 0.9522 0.0589 0.0131
No log 44.96 135 0.3588 0.945 0.0973 0.7818 0.945 0.9478 0.0540 0.0128
No log 45.96 138 0.3634 0.945 0.1011 0.7802 0.945 0.9478 0.0566 0.0124
No log 46.96 141 0.3642 0.945 0.1018 0.7813 0.945 0.9478 0.0564 0.0108
No log 47.96 144 0.3624 0.945 0.1018 0.7858 0.945 0.9478 0.0568 0.0104
No log 48.96 147 0.3653 0.945 0.1011 0.7949 0.945 0.9478 0.0570 0.0110
No log 49.96 150 0.3697 0.945 0.1022 0.8296 0.945 0.9478 0.0565 0.0110
No log 50.96 153 0.3705 0.945 0.1025 0.8677 0.945 0.9478 0.0558 0.0111
No log 51.96 156 0.3753 0.945 0.1042 0.7933 0.945 0.9478 0.0553 0.0106
No log 52.96 159 0.3763 0.945 0.1038 0.7869 0.945 0.9478 0.0580 0.0112
No log 53.96 162 0.3735 0.95 0.1007 0.7751 0.9500 0.9522 0.0551 0.0114
No log 54.96 165 0.3713 0.95 0.0995 0.7660 0.9500 0.9522 0.0551 0.0112
No log 55.96 168 0.3709 0.95 0.0985 0.7592 0.9500 0.9522 0.0540 0.0108
No log 56.96 171 0.3747 0.95 0.0985 0.7580 0.9500 0.9522 0.0530 0.0119
No log 57.96 174 0.3793 0.95 0.0992 0.7567 0.9500 0.9522 0.0532 0.0121
No log 58.96 177 0.3802 0.95 0.0992 0.7519 0.9500 0.9522 0.0540 0.0115
No log 59.96 180 0.3815 0.95 0.1007 0.7485 0.9500 0.9522 0.0545 0.0108
No log 60.96 183 0.3873 0.945 0.1069 0.7489 0.945 0.9478 0.0572 0.0098
No log 61.96 186 0.3883 0.945 0.1070 0.7477 0.945 0.9478 0.0564 0.0097
No log 62.96 189 0.3818 0.945 0.1053 0.7451 0.945 0.9478 0.0561 0.0096
No log 63.96 192 0.3745 0.945 0.1048 0.7446 0.945 0.9478 0.0586 0.0101
No log 64.96 195 0.3762 0.945 0.1030 0.8090 0.945 0.9478 0.0576 0.0103
No log 65.96 198 0.3822 0.95 0.1025 0.8092 0.9500 0.9522 0.0564 0.0104
No log 66.96 201 0.3896 0.95 0.1030 0.8112 0.9500 0.9522 0.0566 0.0103
No log 67.96 204 0.3914 0.945 0.1036 0.8095 0.945 0.9490 0.0586 0.0102
No log 68.96 207 0.3900 0.945 0.1043 0.8060 0.945 0.9490 0.0585 0.0097
No log 69.96 210 0.3903 0.945 0.1059 0.7370 0.945 0.9490 0.0586 0.0099
No log 70.96 213 0.3923 0.94 0.1069 0.7327 0.94 0.9446 0.0568 0.0096
No log 71.96 216 0.3894 0.94 0.1070 0.7316 0.94 0.9446 0.0611 0.0094
No log 72.96 219 0.3847 0.94 0.1053 0.7318 0.94 0.9446 0.0607 0.0100
No log 73.96 222 0.3833 0.94 0.1043 0.7315 0.94 0.9446 0.0603 0.0105
No log 74.96 225 0.3822 0.935 0.1041 0.7310 0.935 0.9353 0.0620 0.0101
No log 75.96 228 0.3771 0.945 0.1026 0.7314 0.945 0.9429 0.0552 0.0100
No log 76.96 231 0.3748 0.945 0.1014 0.7322 0.945 0.9429 0.0569 0.0100
No log 77.96 234 0.3759 0.945 0.1010 0.7332 0.945 0.9429 0.0556 0.0104
No log 78.96 237 0.3775 0.945 0.1009 0.7346 0.945 0.9429 0.0546 0.0107
No log 79.96 240 0.3784 0.94 0.1012 0.7343 0.94 0.9398 0.0558 0.0108
No log 80.96 243 0.3797 0.94 0.1013 0.7340 0.94 0.9398 0.0559 0.0109
No log 81.96 246 0.3821 0.94 0.1012 0.7359 0.94 0.9398 0.0578 0.0109
No log 82.96 249 0.3836 0.94 0.1011 0.7332 0.94 0.9398 0.0576 0.0108
No log 83.96 252 0.3844 0.94 0.1009 0.7318 0.94 0.9398 0.0574 0.0106
No log 84.96 255 0.3859 0.94 0.1009 0.7316 0.94 0.9398 0.0572 0.0106
No log 85.96 258 0.3885 0.94 0.1012 0.7312 0.94 0.9398 0.0546 0.0106
No log 86.96 261 0.3898 0.945 0.1015 0.7292 0.945 0.9429 0.0546 0.0106
No log 87.96 264 0.3905 0.945 0.1018 0.7265 0.945 0.9429 0.0560 0.0108
No log 88.96 267 0.3909 0.945 0.1020 0.7239 0.945 0.9429 0.0558 0.0106
No log 89.96 270 0.3903 0.945 0.1018 0.7219 0.945 0.9429 0.0559 0.0105
No log 90.96 273 0.3895 0.945 0.1017 0.7208 0.945 0.9429 0.0559 0.0105
No log 91.96 276 0.3891 0.945 0.1017 0.7202 0.945 0.9429 0.0562 0.0104
No log 92.96 279 0.3890 0.945 0.1017 0.7201 0.945 0.9429 0.0564 0.0106
No log 93.96 282 0.3889 0.945 0.1018 0.7202 0.945 0.9429 0.0554 0.0105
No log 94.96 285 0.3883 0.945 0.1016 0.7206 0.945 0.9429 0.0555 0.0105
No log 95.96 288 0.3880 0.945 0.1016 0.7210 0.945 0.9429 0.0556 0.0107
No log 96.96 291 0.3880 0.945 0.1016 0.7209 0.945 0.9429 0.0555 0.0107
No log 97.96 294 0.3882 0.945 0.1017 0.7207 0.945 0.9429 0.0555 0.0107
No log 98.96 297 0.3884 0.945 0.1017 0.7205 0.945 0.9429 0.0554 0.0107
No log 99.96 300 0.3885 0.945 0.1018 0.7205 0.945 0.9429 0.0554 0.0107

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1.post200
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.