Model Card for ddpm-ema-sfhq-256
Unconditional DDPM diffusion model trained from scratch on part 4 of the SFHQ dataset of synthetic faces.
accelerate launch train_unconditional.py \
--train_data_dir="/notebooks/sfhq" \
--resolution=256 --center_crop --random_flip \
--output_dir="ddpm-ema-sfhq-256" \
--train_batch_size=8 \
--num_epochs=400 \
--save_images_epochs=1 \
--save_model_epochs=20 \
--gradient_accumulation_steps=1 \
--use_ema \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--resume_from_checkpoint="latest" \
--mixed_precision="fp16" \
--checkpoints_total_limit=5 \
--checkpointing_steps=5000
Model Description
- Developed and funded by: Jonathan Dinu
- Model type: Unconditional DDPM diffusion model
- License: non-commercial research and educational purposes
- Training steps: 2,430,000 (155 epochs)
- Resolution: 256x256 pixels
- Downloads last month
- 4