Edit model card

bert-large-cased-finetuned-lowR100-2-cased-DA-20

This model is a fine-tuned version of bert-large-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 30
  • eval_batch_size: 30
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
6.4515 1.0 1 8.1791
6.4671 2.0 2 6.0155
6.533 3.0 3 5.9784
5.8654 4.0 4 5.2092
5.5458 5.0 5 6.1062
5.1806 6.0 6 5.0913
4.8797 7.0 7 4.3025
4.6975 8.0 8 4.8598
4.2859 9.0 9 4.2301
4.3584 10.0 10 4.0683
4.0203 11.0 11 2.7986
3.977 12.0 12 4.1575
3.4077 13.0 13 3.6507
3.313 14.0 14 2.8674
3.0962 15.0 15 2.5103
2.8883 16.0 16 3.1318
2.9623 17.0 17 2.1316
2.5544 18.0 18 2.7741
2.9957 19.0 19 2.9045
2.749 20.0 20 2.8824
2.291 21.0 21 2.7450
2.3373 22.0 22 2.3774
2.6506 23.0 23 2.5515
2.6736 24.0 24 2.2106
2.3845 25.0 25 2.3166
2.3762 26.0 26 2.3221
2.4184 27.0 27 2.8996
2.6826 28.0 28 2.1793
2.4678 29.0 29 2.4268
2.2998 30.0 30 1.8153
2.7085 31.0 31 2.4401
2.1231 32.0 32 3.3329
2.1349 33.0 33 1.9675
2.4647 34.0 34 3.0172
2.3552 35.0 35 1.8550
2.2843 36.0 36 2.7737
2.2164 37.0 37 3.4890
2.2118 38.0 38 3.4251
2.3133 39.0 39 2.6806
1.9773 40.0 40 2.7801

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.