bsc-bio-ehr-es-finetuned-clinais-augmented1
This model is a fine-tuned version of joheras/bsc-bio-ehr-es-finetuned-clinais on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3581
- Precision: 0.5320
- Recall: 0.6494
- F1: 0.5849
- Accuracy: 0.8583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 90 | 0.6246 | 0.2759 | 0.3485 | 0.3080 | 0.8286 |
No log | 2.0 | 180 | 0.5890 | 0.3511 | 0.4520 | 0.3952 | 0.8402 |
No log | 3.0 | 270 | 0.5973 | 0.3690 | 0.5322 | 0.4358 | 0.8539 |
No log | 4.0 | 360 | 0.6676 | 0.3693 | 0.5713 | 0.4486 | 0.8554 |
No log | 5.0 | 450 | 0.7173 | 0.4227 | 0.6061 | 0.4980 | 0.8544 |
0.3579 | 6.0 | 540 | 0.7854 | 0.4438 | 0.6082 | 0.5131 | 0.8552 |
0.3579 | 7.0 | 630 | 0.8437 | 0.4530 | 0.6103 | 0.5200 | 0.8522 |
0.3579 | 8.0 | 720 | 0.8716 | 0.4349 | 0.6103 | 0.5079 | 0.8513 |
0.3579 | 9.0 | 810 | 0.8868 | 0.4500 | 0.6030 | 0.5153 | 0.8544 |
0.3579 | 10.0 | 900 | 0.8917 | 0.4680 | 0.6251 | 0.5353 | 0.8574 |
0.3579 | 11.0 | 990 | 0.9175 | 0.4769 | 0.6336 | 0.5442 | 0.8548 |
0.0229 | 12.0 | 1080 | 0.9081 | 0.4767 | 0.6473 | 0.5490 | 0.8651 |
0.0229 | 13.0 | 1170 | 0.9692 | 0.4854 | 0.6336 | 0.5497 | 0.8532 |
0.0229 | 14.0 | 1260 | 0.9568 | 0.4947 | 0.6431 | 0.5592 | 0.8592 |
0.0229 | 15.0 | 1350 | 1.0028 | 0.4848 | 0.6241 | 0.5457 | 0.8505 |
0.0229 | 16.0 | 1440 | 1.0302 | 0.4821 | 0.6251 | 0.5444 | 0.8557 |
0.0076 | 17.0 | 1530 | 0.9892 | 0.4918 | 0.6325 | 0.5533 | 0.8584 |
0.0076 | 18.0 | 1620 | 1.0339 | 0.4755 | 0.6135 | 0.5357 | 0.8480 |
0.0076 | 19.0 | 1710 | 1.0066 | 0.4935 | 0.6399 | 0.5572 | 0.8570 |
0.0076 | 20.0 | 1800 | 1.0403 | 0.4959 | 0.6410 | 0.5592 | 0.8564 |
0.0076 | 21.0 | 1890 | 1.0374 | 0.4979 | 0.6336 | 0.5576 | 0.8561 |
0.0076 | 22.0 | 1980 | 1.0758 | 0.4821 | 0.6262 | 0.5448 | 0.8528 |
0.0044 | 23.0 | 2070 | 1.0818 | 0.4876 | 0.6230 | 0.5471 | 0.8524 |
0.0044 | 24.0 | 2160 | 1.0668 | 0.5096 | 0.6431 | 0.5686 | 0.8569 |
0.0044 | 25.0 | 2250 | 1.1033 | 0.4873 | 0.6294 | 0.5493 | 0.8541 |
0.0044 | 26.0 | 2340 | 1.0936 | 0.4880 | 0.6209 | 0.5465 | 0.8544 |
0.0044 | 27.0 | 2430 | 1.0802 | 0.4856 | 0.6399 | 0.5522 | 0.8583 |
0.0028 | 28.0 | 2520 | 1.1245 | 0.5034 | 0.6346 | 0.5614 | 0.8542 |
0.0028 | 29.0 | 2610 | 1.1293 | 0.4874 | 0.6336 | 0.5510 | 0.8521 |
0.0028 | 30.0 | 2700 | 1.0883 | 0.4984 | 0.6494 | 0.5640 | 0.8591 |
0.0028 | 31.0 | 2790 | 1.1434 | 0.5055 | 0.6315 | 0.5615 | 0.8565 |
0.0028 | 32.0 | 2880 | 1.1394 | 0.5041 | 0.6505 | 0.5680 | 0.8558 |
0.0028 | 33.0 | 2970 | 1.1473 | 0.5083 | 0.6452 | 0.5686 | 0.8550 |
0.0026 | 34.0 | 3060 | 1.2286 | 0.4996 | 0.6177 | 0.5524 | 0.8437 |
0.0026 | 35.0 | 3150 | 1.1982 | 0.4996 | 0.6251 | 0.5553 | 0.8521 |
0.0026 | 36.0 | 3240 | 1.1878 | 0.4987 | 0.6294 | 0.5565 | 0.8491 |
0.0026 | 37.0 | 3330 | 1.1633 | 0.4935 | 0.6399 | 0.5572 | 0.8511 |
0.0026 | 38.0 | 3420 | 1.1619 | 0.5097 | 0.6410 | 0.5678 | 0.8587 |
0.0021 | 39.0 | 3510 | 1.1438 | 0.5021 | 0.6420 | 0.5635 | 0.8575 |
0.0021 | 40.0 | 3600 | 1.1511 | 0.5087 | 0.6494 | 0.5705 | 0.8575 |
0.0021 | 41.0 | 3690 | 1.1631 | 0.5128 | 0.6558 | 0.5755 | 0.8576 |
0.0021 | 42.0 | 3780 | 1.1639 | 0.5137 | 0.6526 | 0.5749 | 0.8612 |
0.0021 | 43.0 | 3870 | 1.1946 | 0.5174 | 0.6452 | 0.5742 | 0.8568 |
0.0021 | 44.0 | 3960 | 1.1822 | 0.5132 | 0.6378 | 0.5687 | 0.8556 |
0.0012 | 45.0 | 4050 | 1.1533 | 0.5379 | 0.6441 | 0.5863 | 0.8617 |
0.0012 | 46.0 | 4140 | 1.1584 | 0.5242 | 0.6410 | 0.5767 | 0.8602 |
0.0012 | 47.0 | 4230 | 1.2217 | 0.5159 | 0.6357 | 0.5695 | 0.8567 |
0.0012 | 48.0 | 4320 | 1.2451 | 0.5265 | 0.6399 | 0.5777 | 0.8533 |
0.0012 | 49.0 | 4410 | 1.2191 | 0.5281 | 0.6357 | 0.5769 | 0.8563 |
0.0009 | 50.0 | 4500 | 1.2092 | 0.5320 | 0.6505 | 0.5853 | 0.8548 |
0.0009 | 51.0 | 4590 | 1.2168 | 0.5310 | 0.6431 | 0.5817 | 0.8607 |
0.0009 | 52.0 | 4680 | 1.2273 | 0.5068 | 0.6251 | 0.5598 | 0.8530 |
0.0009 | 53.0 | 4770 | 1.1903 | 0.5254 | 0.6441 | 0.5787 | 0.8618 |
0.0009 | 54.0 | 4860 | 1.1939 | 0.5354 | 0.6473 | 0.5860 | 0.8635 |
0.0009 | 55.0 | 4950 | 1.2311 | 0.5025 | 0.6357 | 0.5613 | 0.8581 |
0.001 | 56.0 | 5040 | 1.2224 | 0.5097 | 0.6389 | 0.5670 | 0.8606 |
0.001 | 57.0 | 5130 | 1.2298 | 0.5017 | 0.6410 | 0.5628 | 0.8586 |
0.001 | 58.0 | 5220 | 1.2278 | 0.5114 | 0.6389 | 0.5681 | 0.8584 |
0.001 | 59.0 | 5310 | 1.2703 | 0.5146 | 0.6505 | 0.5746 | 0.8586 |
0.001 | 60.0 | 5400 | 1.2709 | 0.5445 | 0.6336 | 0.5857 | 0.8549 |
0.001 | 61.0 | 5490 | 1.2691 | 0.5094 | 0.6283 | 0.5626 | 0.8554 |
0.0006 | 62.0 | 5580 | 1.2777 | 0.5076 | 0.6315 | 0.5628 | 0.8523 |
0.0006 | 63.0 | 5670 | 1.2472 | 0.5271 | 0.6357 | 0.5764 | 0.8563 |
0.0006 | 64.0 | 5760 | 1.2709 | 0.5220 | 0.6515 | 0.5796 | 0.8572 |
0.0006 | 65.0 | 5850 | 1.2792 | 0.5306 | 0.6410 | 0.5806 | 0.8613 |
0.0006 | 66.0 | 5940 | 1.2403 | 0.5058 | 0.6399 | 0.5650 | 0.8583 |
0.0005 | 67.0 | 6030 | 1.2778 | 0.5219 | 0.6410 | 0.5754 | 0.8564 |
0.0005 | 68.0 | 6120 | 1.3046 | 0.5431 | 0.6515 | 0.5924 | 0.8595 |
0.0005 | 69.0 | 6210 | 1.3002 | 0.5236 | 0.6452 | 0.5781 | 0.8547 |
0.0005 | 70.0 | 6300 | 1.3068 | 0.5179 | 0.6410 | 0.5729 | 0.8575 |
0.0005 | 71.0 | 6390 | 1.3123 | 0.5259 | 0.6431 | 0.5786 | 0.8572 |
0.0005 | 72.0 | 6480 | 1.3205 | 0.5395 | 0.6484 | 0.5890 | 0.8576 |
0.0004 | 73.0 | 6570 | 1.3281 | 0.5420 | 0.6473 | 0.5900 | 0.8578 |
0.0004 | 74.0 | 6660 | 1.3326 | 0.5381 | 0.6484 | 0.5881 | 0.8575 |
0.0004 | 75.0 | 6750 | 1.3532 | 0.5393 | 0.6452 | 0.5875 | 0.8553 |
0.0004 | 76.0 | 6840 | 1.3562 | 0.5215 | 0.6283 | 0.5699 | 0.8537 |
0.0004 | 77.0 | 6930 | 1.3385 | 0.5144 | 0.6420 | 0.5712 | 0.8569 |
0.0003 | 78.0 | 7020 | 1.3435 | 0.5303 | 0.6463 | 0.5826 | 0.8570 |
0.0003 | 79.0 | 7110 | 1.3402 | 0.5366 | 0.6505 | 0.5881 | 0.8568 |
0.0003 | 80.0 | 7200 | 1.3415 | 0.5469 | 0.6526 | 0.5951 | 0.8569 |
0.0003 | 81.0 | 7290 | 1.3335 | 0.5181 | 0.6505 | 0.5768 | 0.8578 |
0.0003 | 82.0 | 7380 | 1.3433 | 0.5258 | 0.6452 | 0.5794 | 0.8569 |
0.0003 | 83.0 | 7470 | 1.3351 | 0.5247 | 0.6515 | 0.5813 | 0.8566 |
0.0002 | 84.0 | 7560 | 1.3912 | 0.5187 | 0.6431 | 0.5743 | 0.8515 |
0.0002 | 85.0 | 7650 | 1.3507 | 0.5147 | 0.6463 | 0.5730 | 0.8566 |
0.0002 | 86.0 | 7740 | 1.3594 | 0.5221 | 0.6494 | 0.5788 | 0.8556 |
0.0002 | 87.0 | 7830 | 1.3647 | 0.5262 | 0.6463 | 0.5801 | 0.8547 |
0.0002 | 88.0 | 7920 | 1.3629 | 0.5263 | 0.6441 | 0.5793 | 0.8550 |
0.0002 | 89.0 | 8010 | 1.3769 | 0.5277 | 0.6441 | 0.5801 | 0.8535 |
0.0002 | 90.0 | 8100 | 1.3733 | 0.5268 | 0.6431 | 0.5792 | 0.8556 |
0.0002 | 91.0 | 8190 | 1.3648 | 0.5240 | 0.6452 | 0.5783 | 0.8562 |
0.0002 | 92.0 | 8280 | 1.3666 | 0.5228 | 0.6410 | 0.5759 | 0.8561 |
0.0002 | 93.0 | 8370 | 1.3577 | 0.5231 | 0.6452 | 0.5778 | 0.8580 |
0.0002 | 94.0 | 8460 | 1.3514 | 0.5340 | 0.6547 | 0.5882 | 0.8580 |
0.0002 | 95.0 | 8550 | 1.3564 | 0.5328 | 0.6526 | 0.5866 | 0.8582 |
0.0002 | 96.0 | 8640 | 1.3563 | 0.5342 | 0.6515 | 0.5871 | 0.8584 |
0.0002 | 97.0 | 8730 | 1.3567 | 0.5347 | 0.6505 | 0.5869 | 0.8584 |
0.0002 | 98.0 | 8820 | 1.3576 | 0.5347 | 0.6505 | 0.5869 | 0.8583 |
0.0002 | 99.0 | 8910 | 1.3583 | 0.5339 | 0.6494 | 0.5860 | 0.8582 |
0.0001 | 100.0 | 9000 | 1.3581 | 0.5320 | 0.6494 | 0.5849 | 0.8583 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0
- Datasets 2.8.0
- Tokenizers 0.12.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.