# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .

## Usage
```python
model = load_from_hub(repo_id="jjjjjjjjjj/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")

# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])

evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])

```
Downloads last month

-

Downloads are not tracked for this model. How to track
Video Preview
loading

Evaluation results

  • mean_reward on FrozenLake-v1-4x4-no_slippery
    self-reported
    1.00 +/- 0.00