Edit model card

wav2vec2-base-2

This model is a fine-tuned version of jiobiala24/wav2vec2-base-1 on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9415
  • Wer: 0.3076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4206 1.96 1000 0.6022 0.3435
0.3278 3.93 2000 0.6191 0.3344
0.2604 5.89 3000 0.6170 0.3288
0.2135 7.86 4000 0.6590 0.3239
0.1805 9.82 5000 0.7359 0.3289
0.1582 11.79 6000 0.7450 0.3276
0.1399 13.75 7000 0.7914 0.3218
0.1252 15.72 8000 0.8254 0.3185
0.1095 17.68 9000 0.8524 0.3184
0.1 19.65 10000 0.8340 0.3165
0.0905 21.61 11000 0.8846 0.3161
0.0819 23.58 12000 0.8994 0.3142
0.0763 25.54 13000 0.9018 0.3134
0.0726 27.5 14000 0.9552 0.3081
0.0668 29.47 15000 0.9415 0.3076

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.13.3
  • Tokenizers 0.10.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train jiobiala24/wav2vec2-base-2