Model Description
This model is a fine-tuned version of distilroberta-base on ConLL2003 dataset.
It achieves the following results on the evaluation set in Named Entity Recognition (NER)/Token Classification task:
Model Performance
Model Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("jinhybr/distilroberta-ConLL2003")
model = AutoModelForTokenClassification.from_pretrained("jinhybr/distilroberta-ConLL2003")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "My name is Tao Jin and live in Canada"
ner_results = nlp(example)
print(ner_results)
[{'entity_group': 'PER', 'score': 0.99686015, 'word': ' Tao Jin', 'start': 11, 'end': 18}, {'entity_group': 'LOC', 'score': 0.9996836, 'word': ' Canada', 'start': 31, 'end': 37}]
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6.0
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
F1 |
0.1666 |
1.0 |
439 |
0.0621 |
0.9345 |
0.0499 |
2.0 |
878 |
0.0564 |
0.9391 |
0.0273 |
3.0 |
1317 |
0.0553 |
0.9469 |
0.0167 |
4.0 |
1756 |
0.0553 |
0.9492 |
0.0103 |
5.0 |
2195 |
0.0572 |
0.9516 |
0.0068 |
6.0 |
2634 |
0.0585 |
0.9536 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1