Edit model card

OCR-LM-v1

This model is a fine-tuned version of jinhybr/layoutlm-funsd-pytorch on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1740
  • Answer: {'precision': 0.7201327433628318, 'recall': 0.8046971569839307, 'f1': 0.7600700525394046, 'number': 809}
  • Header: {'precision': 0.4246575342465753, 'recall': 0.5210084033613446, 'f1': 0.46792452830188674, 'number': 119}
  • Question: {'precision': 0.8236380424746076, 'recall': 0.8375586854460094, 'f1': 0.8305400372439479, 'number': 1065}
  • Overall Precision: 0.7525
  • Overall Recall: 0.8053
  • Overall F1: 0.7780
  • Overall Accuracy: 0.8146

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3093 1.0 10 0.7358 {'precision': 0.7053763440860215, 'recall': 0.8108776266996292, 'f1': 0.7544565842438183, 'number': 809} {'precision': 0.33587786259541985, 'recall': 0.3697478991596639, 'f1': 0.35200000000000004, 'number': 119} {'precision': 0.7900900900900901, 'recall': 0.8234741784037559, 'f1': 0.8064367816091954, 'number': 1065} 0.7264 0.7913 0.7574 0.8064
0.2626 2.0 20 0.7389 {'precision': 0.7217090069284064, 'recall': 0.7725587144622992, 'f1': 0.746268656716418, 'number': 809} {'precision': 0.33986928104575165, 'recall': 0.4369747899159664, 'f1': 0.3823529411764706, 'number': 119} {'precision': 0.7693661971830986, 'recall': 0.8206572769953052, 'f1': 0.79418446160836, 'number': 1065} 0.7197 0.7782 0.7478 0.7999
0.2096 3.0 30 0.7834 {'precision': 0.7417452830188679, 'recall': 0.7775030902348579, 'f1': 0.7592033796016897, 'number': 809} {'precision': 0.3724137931034483, 'recall': 0.453781512605042, 'f1': 0.40909090909090906, 'number': 119} {'precision': 0.7889087656529516, 'recall': 0.828169014084507, 'f1': 0.8080622995877232, 'number': 1065} 0.7414 0.7852 0.7627 0.8003
0.1755 4.0 40 0.7856 {'precision': 0.6917372881355932, 'recall': 0.8071693448702101, 'f1': 0.7450085567598402, 'number': 809} {'precision': 0.35135135135135137, 'recall': 0.4369747899159664, 'f1': 0.3895131086142322, 'number': 119} {'precision': 0.7893333333333333, 'recall': 0.8338028169014085, 'f1': 0.810958904109589, 'number': 1065} 0.7185 0.7993 0.7568 0.8005
0.1421 5.0 50 0.8088 {'precision': 0.7144444444444444, 'recall': 0.7948084054388134, 'f1': 0.7524868344060853, 'number': 809} {'precision': 0.39436619718309857, 'recall': 0.47058823529411764, 'f1': 0.4291187739463601, 'number': 119} {'precision': 0.7915543575920935, 'recall': 0.8272300469483568, 'f1': 0.8089990817263545, 'number': 1065} 0.7332 0.7928 0.7618 0.8014
0.1235 6.0 60 0.8637 {'precision': 0.7262313860252004, 'recall': 0.7836835599505563, 'f1': 0.7538644470868016, 'number': 809} {'precision': 0.37410071942446044, 'recall': 0.4369747899159664, 'f1': 0.40310077519379844, 'number': 119} {'precision': 0.7994604316546763, 'recall': 0.8347417840375587, 'f1': 0.8167202572347267, 'number': 1065} 0.7415 0.7903 0.7651 0.8026
0.1057 7.0 70 0.8848 {'precision': 0.7323290845886443, 'recall': 0.7812113720642769, 'f1': 0.7559808612440193, 'number': 809} {'precision': 0.3986013986013986, 'recall': 0.4789915966386555, 'f1': 0.4351145038167939, 'number': 119} {'precision': 0.7989080982711556, 'recall': 0.8244131455399061, 'f1': 0.8114602587800368, 'number': 1065} 0.7444 0.7863 0.7648 0.7959
0.1054 8.0 80 0.9131 {'precision': 0.7241758241758242, 'recall': 0.8145859085290482, 'f1': 0.7667248400232693, 'number': 809} {'precision': 0.41916167664670656, 'recall': 0.5882352941176471, 'f1': 0.4895104895104894, 'number': 119} {'precision': 0.8152686145146089, 'recall': 0.812206572769953, 'f1': 0.8137347130761995, 'number': 1065} 0.7456 0.7998 0.7717 0.8021
0.0814 9.0 90 0.9202 {'precision': 0.7013129102844639, 'recall': 0.792336217552534, 'f1': 0.7440510737086476, 'number': 809} {'precision': 0.42758620689655175, 'recall': 0.5210084033613446, 'f1': 0.4696969696969697, 'number': 119} {'precision': 0.8076572470373746, 'recall': 0.831924882629108, 'f1': 0.8196114708603145, 'number': 1065} 0.7370 0.7973 0.7660 0.8017
0.0722 10.0 100 0.9309 {'precision': 0.711211778029445, 'recall': 0.7762669962917181, 'f1': 0.7423167848699764, 'number': 809} {'precision': 0.3816793893129771, 'recall': 0.42016806722689076, 'f1': 0.4, 'number': 119} {'precision': 0.8154706430568499, 'recall': 0.8215962441314554, 'f1': 0.8185219831618334, 'number': 1065} 0.7441 0.7792 0.7613 0.8029
0.062 11.0 110 0.9820 {'precision': 0.717391304347826, 'recall': 0.7750309023485785, 'f1': 0.7450980392156862, 'number': 809} {'precision': 0.37735849056603776, 'recall': 0.5042016806722689, 'f1': 0.43165467625899284, 'number': 119} {'precision': 0.7917414721723519, 'recall': 0.828169014084507, 'f1': 0.8095456631482332, 'number': 1065} 0.7308 0.7873 0.7580 0.7977
0.056 12.0 120 0.9787 {'precision': 0.7014270032930845, 'recall': 0.7898640296662547, 'f1': 0.7430232558139536, 'number': 809} {'precision': 0.3881578947368421, 'recall': 0.4957983193277311, 'f1': 0.4354243542435424, 'number': 119} {'precision': 0.8092592592592592, 'recall': 0.8206572769953052, 'f1': 0.814918414918415, 'number': 1065} 0.7336 0.7888 0.7602 0.8069
0.0521 13.0 130 1.0012 {'precision': 0.7094972067039106, 'recall': 0.7849196538936959, 'f1': 0.7453051643192488, 'number': 809} {'precision': 0.39568345323741005, 'recall': 0.46218487394957986, 'f1': 0.4263565891472868, 'number': 119} {'precision': 0.8278457196613358, 'recall': 0.8262910798122066, 'f1': 0.8270676691729324, 'number': 1065} 0.7487 0.7878 0.7677 0.8054
0.0512 14.0 140 1.0412 {'precision': 0.7181818181818181, 'recall': 0.7812113720642769, 'f1': 0.7483718176435761, 'number': 809} {'precision': 0.417910447761194, 'recall': 0.47058823529411764, 'f1': 0.4426877470355731, 'number': 119} {'precision': 0.7925531914893617, 'recall': 0.8394366197183099, 'f1': 0.8153214774281805, 'number': 1065} 0.7386 0.7938 0.7652 0.7924
0.0422 15.0 150 1.0369 {'precision': 0.6987315010570825, 'recall': 0.8170580964153276, 'f1': 0.7532763532763533, 'number': 809} {'precision': 0.4222222222222222, 'recall': 0.4789915966386555, 'f1': 0.44881889763779526, 'number': 119} {'precision': 0.8138248847926267, 'recall': 0.8291079812206573, 'f1': 0.8213953488372093, 'number': 1065} 0.7392 0.8033 0.7699 0.8060
0.041 16.0 160 1.0669 {'precision': 0.7108843537414966, 'recall': 0.7750309023485785, 'f1': 0.7415730337078651, 'number': 809} {'precision': 0.4117647058823529, 'recall': 0.47058823529411764, 'f1': 0.4392156862745098, 'number': 119} {'precision': 0.7953736654804271, 'recall': 0.8394366197183099, 'f1': 0.8168113293741435, 'number': 1065} 0.7362 0.7913 0.7628 0.7989
0.0338 17.0 170 1.0376 {'precision': 0.7056277056277056, 'recall': 0.8059332509270705, 'f1': 0.7524523946912869, 'number': 809} {'precision': 0.4117647058823529, 'recall': 0.5294117647058824, 'f1': 0.463235294117647, 'number': 119} {'precision': 0.8159111933395005, 'recall': 0.828169014084507, 'f1': 0.8219944082013048, 'number': 1065} 0.7400 0.8013 0.7695 0.8062
0.0343 18.0 180 1.0498 {'precision': 0.7165178571428571, 'recall': 0.7935723114956736, 'f1': 0.7530791788856306, 'number': 809} {'precision': 0.42953020134228187, 'recall': 0.5378151260504201, 'f1': 0.47761194029850745, 'number': 119} {'precision': 0.8065693430656934, 'recall': 0.8300469483568075, 'f1': 0.8181397501156872, 'number': 1065} 0.7426 0.7978 0.7692 0.8035
0.0294 19.0 190 1.0455 {'precision': 0.7022900763358778, 'recall': 0.796044499381953, 'f1': 0.7462340672074159, 'number': 809} {'precision': 0.42857142857142855, 'recall': 0.5042016806722689, 'f1': 0.4633204633204633, 'number': 119} {'precision': 0.8277153558052435, 'recall': 0.8300469483568075, 'f1': 0.8288795124238162, 'number': 1065} 0.7473 0.7968 0.7712 0.8077
0.0302 20.0 200 1.0363 {'precision': 0.7261363636363637, 'recall': 0.7898640296662547, 'f1': 0.7566607460035524, 'number': 809} {'precision': 0.4225352112676056, 'recall': 0.5042016806722689, 'f1': 0.45977011494252873, 'number': 119} {'precision': 0.8149498632634458, 'recall': 0.8394366197183099, 'f1': 0.8270120259019426, 'number': 1065} 0.7518 0.7993 0.7748 0.8073
0.0232 21.0 210 1.0406 {'precision': 0.7085152838427947, 'recall': 0.8022249690976514, 'f1': 0.7524637681159421, 'number': 809} {'precision': 0.4142857142857143, 'recall': 0.48739495798319327, 'f1': 0.4478764478764479, 'number': 119} {'precision': 0.8198529411764706, 'recall': 0.8375586854460094, 'f1': 0.8286112401300512, 'number': 1065} 0.7458 0.8023 0.7730 0.8096
0.025 22.0 220 1.0627 {'precision': 0.7220338983050848, 'recall': 0.7898640296662547, 'f1': 0.7544273907910272, 'number': 809} {'precision': 0.4306569343065693, 'recall': 0.4957983193277311, 'f1': 0.46093749999999994, 'number': 119} {'precision': 0.8222836095764272, 'recall': 0.8384976525821596, 'f1': 0.8303114830311482, 'number': 1065} 0.7547 0.7983 0.7759 0.8125
0.0203 23.0 230 1.0621 {'precision': 0.7149122807017544, 'recall': 0.8059332509270705, 'f1': 0.757699012202208, 'number': 809} {'precision': 0.42857142857142855, 'recall': 0.5042016806722689, 'f1': 0.4633204633204633, 'number': 119} {'precision': 0.8182656826568265, 'recall': 0.8328638497652582, 'f1': 0.8255002326663564, 'number': 1065} 0.7486 0.8023 0.7745 0.8139
0.0214 24.0 240 1.1079 {'precision': 0.7268571428571429, 'recall': 0.7861557478368356, 'f1': 0.7553444180522566, 'number': 809} {'precision': 0.40397350993377484, 'recall': 0.5126050420168067, 'f1': 0.45185185185185184, 'number': 119} {'precision': 0.8148820326678766, 'recall': 0.8431924882629108, 'f1': 0.8287955699123213, 'number': 1065} 0.7495 0.8003 0.7741 0.8050
0.0179 25.0 250 1.0955 {'precision': 0.7149270482603816, 'recall': 0.7873918417799752, 'f1': 0.7494117647058823, 'number': 809} {'precision': 0.4057971014492754, 'recall': 0.47058823529411764, 'f1': 0.43579766536964987, 'number': 119} {'precision': 0.8115942028985508, 'recall': 0.8413145539906103, 'f1': 0.826187183033656, 'number': 1065} 0.7450 0.7973 0.7702 0.8075
0.0181 26.0 260 1.0775 {'precision': 0.7172949002217295, 'recall': 0.799752781211372, 'f1': 0.7562828755113968, 'number': 809} {'precision': 0.4088050314465409, 'recall': 0.5462184873949579, 'f1': 0.4676258992805755, 'number': 119} {'precision': 0.8122151321786691, 'recall': 0.8366197183098592, 'f1': 0.8242368177613321, 'number': 1065} 0.7428 0.8043 0.7723 0.8103
0.0169 27.0 270 1.0667 {'precision': 0.7176339285714286, 'recall': 0.7948084054388134, 'f1': 0.7542521994134898, 'number': 809} {'precision': 0.41721854304635764, 'recall': 0.5294117647058824, 'f1': 0.4666666666666667, 'number': 119} {'precision': 0.821656050955414, 'recall': 0.847887323943662, 'f1': 0.8345656192236599, 'number': 1065} 0.7498 0.8073 0.7775 0.8115
0.0164 28.0 280 1.0798 {'precision': 0.7106382978723405, 'recall': 0.8257107540173053, 'f1': 0.7638650657518582, 'number': 809} {'precision': 0.42567567567567566, 'recall': 0.5294117647058824, 'f1': 0.47191011235955055, 'number': 119} {'precision': 0.8265682656826568, 'recall': 0.8413145539906103, 'f1': 0.8338762214983713, 'number': 1065} 0.7491 0.8164 0.7813 0.8152
0.0178 29.0 290 1.0944 {'precision': 0.7214611872146118, 'recall': 0.7812113720642769, 'f1': 0.7501483679525223, 'number': 809} {'precision': 0.4496124031007752, 'recall': 0.48739495798319327, 'f1': 0.467741935483871, 'number': 119} {'precision': 0.8191881918819188, 'recall': 0.8338028169014085, 'f1': 0.8264308980921358, 'number': 1065} 0.7554 0.7918 0.7732 0.8136
0.0151 30.0 300 1.0994 {'precision': 0.7141292442497261, 'recall': 0.8059332509270705, 'f1': 0.7572590011614402, 'number': 809} {'precision': 0.43795620437956206, 'recall': 0.5042016806722689, 'f1': 0.46875, 'number': 119} {'precision': 0.8211981566820277, 'recall': 0.8366197183098592, 'f1': 0.8288372093023256, 'number': 1065} 0.7508 0.8043 0.7766 0.8151
0.0127 31.0 310 1.1177 {'precision': 0.7144420131291028, 'recall': 0.8071693448702101, 'f1': 0.7579802669762042, 'number': 809} {'precision': 0.4264705882352941, 'recall': 0.48739495798319327, 'f1': 0.4549019607843137, 'number': 119} {'precision': 0.82483781278962, 'recall': 0.8356807511737089, 'f1': 0.8302238805970149, 'number': 1065} 0.7520 0.8033 0.7768 0.8136
0.0123 32.0 320 1.1295 {'precision': 0.7280799112097669, 'recall': 0.8108776266996292, 'f1': 0.7672514619883041, 'number': 809} {'precision': 0.4316546762589928, 'recall': 0.5042016806722689, 'f1': 0.46511627906976744, 'number': 119} {'precision': 0.8176043557168784, 'recall': 0.8460093896713615, 'f1': 0.8315643747115828, 'number': 1065} 0.7549 0.8113 0.7821 0.8127
0.0105 33.0 330 1.1422 {'precision': 0.717439293598234, 'recall': 0.8034610630407911, 'f1': 0.7580174927113702, 'number': 809} {'precision': 0.427536231884058, 'recall': 0.4957983193277311, 'f1': 0.4591439688715953, 'number': 119} {'precision': 0.8168498168498168, 'recall': 0.8375586854460094, 'f1': 0.8270746407046824, 'number': 1065} 0.7495 0.8033 0.7755 0.8110
0.0099 34.0 340 1.1476 {'precision': 0.7194323144104804, 'recall': 0.8145859085290482, 'f1': 0.7640579710144928, 'number': 809} {'precision': 0.43478260869565216, 'recall': 0.5042016806722689, 'f1': 0.4669260700389105, 'number': 119} {'precision': 0.8256880733944955, 'recall': 0.8450704225352113, 'f1': 0.8352668213457076, 'number': 1065} 0.7551 0.8123 0.7827 0.8132
0.0115 35.0 350 1.1590 {'precision': 0.7200878155872668, 'recall': 0.8108776266996292, 'f1': 0.7627906976744185, 'number': 809} {'precision': 0.4125874125874126, 'recall': 0.4957983193277311, 'f1': 0.450381679389313, 'number': 119} {'precision': 0.8325581395348837, 'recall': 0.8403755868544601, 'f1': 0.8364485981308412, 'number': 1065} 0.7562 0.8078 0.7812 0.8129
0.0098 36.0 360 1.1619 {'precision': 0.7271714922048997, 'recall': 0.8071693448702101, 'f1': 0.7650849443468072, 'number': 809} {'precision': 0.41379310344827586, 'recall': 0.5042016806722689, 'f1': 0.45454545454545453, 'number': 119} {'precision': 0.8226691042047533, 'recall': 0.8450704225352113, 'f1': 0.8337193144974525, 'number': 1065} 0.7548 0.8093 0.7811 0.8140
0.0089 37.0 370 1.1555 {'precision': 0.7289823008849557, 'recall': 0.8145859085290482, 'f1': 0.7694103911266784, 'number': 809} {'precision': 0.42857142857142855, 'recall': 0.5042016806722689, 'f1': 0.4633204633204633, 'number': 119} {'precision': 0.8178571428571428, 'recall': 0.860093896713615, 'f1': 0.8384439359267735, 'number': 1065} 0.7555 0.8204 0.7866 0.8158
0.0116 38.0 380 1.1472 {'precision': 0.7161862527716186, 'recall': 0.7985166872682324, 'f1': 0.7551139684395091, 'number': 809} {'precision': 0.42962962962962964, 'recall': 0.48739495798319327, 'f1': 0.45669291338582674, 'number': 119} {'precision': 0.8250460405156538, 'recall': 0.8413145539906103, 'f1': 0.8331008833100882, 'number': 1065} 0.7537 0.8028 0.7775 0.8152
0.0089 39.0 390 1.1558 {'precision': 0.7158590308370044, 'recall': 0.8034610630407911, 'f1': 0.7571345369831101, 'number': 809} {'precision': 0.41721854304635764, 'recall': 0.5294117647058824, 'f1': 0.4666666666666667, 'number': 119} {'precision': 0.8302583025830258, 'recall': 0.8450704225352113, 'f1': 0.8375988832014891, 'number': 1065} 0.7527 0.8093 0.7800 0.8120
0.0085 40.0 400 1.1576 {'precision': 0.7169398907103826, 'recall': 0.8108776266996292, 'f1': 0.7610208816705337, 'number': 809} {'precision': 0.41843971631205673, 'recall': 0.4957983193277311, 'f1': 0.4538461538461538, 'number': 119} {'precision': 0.8249772105742935, 'recall': 0.8497652582159625, 'f1': 0.8371877890841812, 'number': 1065} 0.7524 0.8128 0.7815 0.8127
0.0079 41.0 410 1.1551 {'precision': 0.716500553709856, 'recall': 0.799752781211372, 'f1': 0.7558411214953271, 'number': 809} {'precision': 0.44696969696969696, 'recall': 0.4957983193277311, 'f1': 0.47011952191235057, 'number': 119} {'precision': 0.8264462809917356, 'recall': 0.8450704225352113, 'f1': 0.8356545961002786, 'number': 1065} 0.7561 0.8058 0.7802 0.8145
0.0069 42.0 420 1.1656 {'precision': 0.7169603524229075, 'recall': 0.8046971569839307, 'f1': 0.7582993593476993, 'number': 809} {'precision': 0.4315068493150685, 'recall': 0.5294117647058824, 'f1': 0.4754716981132075, 'number': 119} {'precision': 0.8236914600550964, 'recall': 0.8422535211267606, 'f1': 0.8328690807799443, 'number': 1065} 0.7517 0.8083 0.7790 0.8137
0.0067 43.0 430 1.1720 {'precision': 0.7145993413830956, 'recall': 0.8046971569839307, 'f1': 0.7569767441860464, 'number': 809} {'precision': 0.43661971830985913, 'recall': 0.5210084033613446, 'f1': 0.47509578544061304, 'number': 119} {'precision': 0.8190909090909091, 'recall': 0.8460093896713615, 'f1': 0.8323325635103926, 'number': 1065} 0.7497 0.8098 0.7786 0.8126
0.0083 44.0 440 1.1720 {'precision': 0.7203579418344519, 'recall': 0.796044499381953, 'f1': 0.756312389900176, 'number': 809} {'precision': 0.4397163120567376, 'recall': 0.5210084033613446, 'f1': 0.47692307692307695, 'number': 119} {'precision': 0.8225659690627843, 'recall': 0.8488262910798122, 'f1': 0.8354898336414048, 'number': 1065} 0.7545 0.8078 0.7802 0.8150
0.0072 45.0 450 1.1733 {'precision': 0.727683615819209, 'recall': 0.796044499381953, 'f1': 0.7603305785123966, 'number': 809} {'precision': 0.4338235294117647, 'recall': 0.4957983193277311, 'f1': 0.4627450980392157, 'number': 119} {'precision': 0.8209090909090909, 'recall': 0.847887323943662, 'f1': 0.8341801385681292, 'number': 1065} 0.7572 0.8058 0.7807 0.8148
0.0092 46.0 460 1.1712 {'precision': 0.7188888888888889, 'recall': 0.799752781211372, 'f1': 0.7571679344645992, 'number': 809} {'precision': 0.4306569343065693, 'recall': 0.4957983193277311, 'f1': 0.46093749999999994, 'number': 119} {'precision': 0.8214285714285714, 'recall': 0.8422535211267606, 'f1': 0.8317107093184979, 'number': 1065} 0.7529 0.8043 0.7778 0.8146
0.0063 47.0 470 1.1723 {'precision': 0.7158590308370044, 'recall': 0.8034610630407911, 'f1': 0.7571345369831101, 'number': 809} {'precision': 0.4326241134751773, 'recall': 0.5126050420168067, 'f1': 0.4692307692307692, 'number': 119} {'precision': 0.8212648945921174, 'recall': 0.8413145539906103, 'f1': 0.8311688311688312, 'number': 1065} 0.7509 0.8063 0.7776 0.8154
0.0064 48.0 480 1.1740 {'precision': 0.7166482910694597, 'recall': 0.8034610630407911, 'f1': 0.7575757575757576, 'number': 809} {'precision': 0.42657342657342656, 'recall': 0.5126050420168067, 'f1': 0.46564885496183206, 'number': 119} {'precision': 0.8226102941176471, 'recall': 0.8403755868544601, 'f1': 0.8313980492336275, 'number': 1065} 0.7512 0.8058 0.7775 0.8147
0.0069 49.0 490 1.1742 {'precision': 0.7209302325581395, 'recall': 0.8046971569839307, 'f1': 0.7605140186915887, 'number': 809} {'precision': 0.4246575342465753, 'recall': 0.5210084033613446, 'f1': 0.46792452830188674, 'number': 119} {'precision': 0.8236380424746076, 'recall': 0.8375586854460094, 'f1': 0.8305400372439479, 'number': 1065} 0.7528 0.8053 0.7782 0.8145
0.0062 50.0 500 1.1740 {'precision': 0.7201327433628318, 'recall': 0.8046971569839307, 'f1': 0.7600700525394046, 'number': 809} {'precision': 0.4246575342465753, 'recall': 0.5210084033613446, 'f1': 0.46792452830188674, 'number': 119} {'precision': 0.8236380424746076, 'recall': 0.8375586854460094, 'f1': 0.8305400372439479, 'number': 1065} 0.7525 0.8053 0.7780 0.8146

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using jinhybr/OCR-LM-v1 1