Edit model card

torgo_tiny_finetune_M05_frozen_encoder

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2755
  • Wer: 40.5772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.7762 0.84 500 0.2681 42.3599
0.0927 1.68 1000 0.2688 26.0611
0.0703 2.53 1500 0.2827 27.6740
0.0457 3.37 2000 0.2467 22.4109
0.0318 4.21 2500 0.2900 21.8166
0.0225 5.05 3000 0.2947 23.9389
0.0173 5.89 3500 0.2752 22.3260
0.0127 6.73 4000 0.2749 22.7504
0.0112 7.58 4500 0.2957 22.4109
0.008 8.42 5000 0.2765 23.3447
0.0071 9.26 5500 0.2780 30.3056
0.0049 10.1 6000 0.2827 23.5144
0.0045 10.94 6500 0.2884 34.5501
0.0036 11.78 7000 0.2605 36.1630
0.0028 12.63 7500 0.2787 30.5603
0.0024 13.47 8000 0.2758 31.5789
0.0016 14.31 8500 0.2801 33.1919
0.0018 15.15 9000 0.2779 33.9559
0.0011 15.99 9500 0.2737 37.2666
0.0008 16.84 10000 0.2757 31.5789
0.0005 17.68 10500 0.2787 35.6537
0.0004 18.52 11000 0.2747 35.9083
0.0003 19.36 11500 0.2755 40.5772

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jindaznb/torgo_tiny_finetune_M05_frozen_encoder

Finetuned
(1201)
this model