Edit model card

torgo_tiny_finetune_M01

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3526
  • Wer: 96.6044

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
0.6272 0.85 500 0.2872 24.1087
0.1055 1.7 1000 0.3364 77.5042
0.0998 2.55 1500 0.3646 65.8744
0.0635 3.4 2000 0.3276 34.9745
0.0521 4.24 2500 0.3619 31.8336
0.0368 5.09 3000 0.3158 43.0390
0.0269 5.94 3500 0.3424 53.7351
0.0215 6.79 4000 0.2886 48.8964
0.0182 7.64 4500 0.3331 31.0696
0.0135 8.49 5000 0.3308 45.0764
0.0092 9.34 5500 0.2825 28.9474
0.0088 10.19 6000 0.3169 32.3430
0.0056 11.04 6500 0.3223 55.7725
0.0034 11.88 7000 0.3396 30.2207
0.0041 12.73 7500 0.3403 31.8336
0.0031 13.58 8000 0.3544 138.4550
0.0023 14.43 8500 0.3357 54.8387
0.0004 15.28 9000 0.3618 53.6503
0.0003 16.13 9500 0.3598 74.3633
0.0002 16.98 10000 0.3536 98.8964
0.0003 17.83 10500 0.3529 95.8404
0.0001 18.68 11000 0.3505 98.0475
0.0001 19.52 11500 0.3526 96.6044

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jindaznb/torgo_tiny_finetune_M01

Finetuned
(1213)
this model