Add compatibility with Sentence Transformers v3.2.0
#45
by
tomaarsen
HF staff
- opened
- custom_st.py +9 -0
custom_st.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import json
|
|
|
2 |
import os
|
3 |
from io import BytesIO
|
4 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
@@ -7,6 +8,8 @@ import torch
|
|
7 |
from torch import nn
|
8 |
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
9 |
|
|
|
|
|
10 |
|
11 |
class Transformer(nn.Module):
|
12 |
"""Huggingface AutoModel to generate token embeddings.
|
@@ -40,6 +43,7 @@ class Transformer(nn.Module):
|
|
40 |
cache_dir: str = None,
|
41 |
do_lower_case: bool = False,
|
42 |
tokenizer_name_or_path: str = None,
|
|
|
43 |
) -> None:
|
44 |
super().__init__()
|
45 |
self.config_keys = ["max_seq_length", "do_lower_case"]
|
@@ -51,6 +55,11 @@ class Transformer(nn.Module):
|
|
51 |
if config_args is None:
|
52 |
config_args = {}
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
56 |
|
|
|
1 |
import json
|
2 |
+
import logging
|
3 |
import os
|
4 |
from io import BytesIO
|
5 |
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
8 |
from torch import nn
|
9 |
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
10 |
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
|
13 |
|
14 |
class Transformer(nn.Module):
|
15 |
"""Huggingface AutoModel to generate token embeddings.
|
|
|
43 |
cache_dir: str = None,
|
44 |
do_lower_case: bool = False,
|
45 |
tokenizer_name_or_path: str = None,
|
46 |
+
**kwargs,
|
47 |
) -> None:
|
48 |
super().__init__()
|
49 |
self.config_keys = ["max_seq_length", "do_lower_case"]
|
|
|
55 |
if config_args is None:
|
56 |
config_args = {}
|
57 |
|
58 |
+
if kwargs.get("backend", "torch") != "torch":
|
59 |
+
logger.warning(
|
60 |
+
f'"jinaai/jina-embeddings-v3" is currently not compatible with the {kwargs["backend"]} backend. '
|
61 |
+
'Continuing with the "torch" backend.'
|
62 |
+
)
|
63 |
|
64 |
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir)
|
65 |
|