Wav2Vec2-Large-XLSR-Irish

Fine-tuned facebook/wav2vec2-large-xlsr-53 on the Irish Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Irish test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ga-IE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic") 
model.to("cuda")
# So, tolower() for Irish is a bit complicated: tAthar -> t-athair
# toupper() is non-deterministic :)
def is_upper_vowel(letter):
    if letter in ['A', 'E', 'I', 'O', 'U', 'Á', 'É', 'Í', 'Ó', 'Ú']:
        return True
    else:
        return False
def irish_lower(word):
    if len(word) > 1 and word[0] in ['n', 't'] and is_upper_vowel(word[1]):
        return word[0] + '-' + word[1:].lower()
    else:
        return word.lower()
def irish_lower_sentence(sentence):
    return " ".join([irish_lower(w) for w in sentence.split(" ")])
chars_to_ignore_regex = '[,\?\.\!\;\:\"\“\%\‘\”\(\)\*]'
def remove_special_characters(sentence):
    tmp = re.sub('’ ', ' ', sentence)
    tmp = re.sub("’$", '', tmp)
    tmp = re.sub('’', '\'', tmp)
    tmp = re.sub(chars_to_ignore_regex, '', tmp)
    sentence = irish_lower_sentence(tmp) + ' '
    return sentence
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = remove_special_characters(batch["sentence"])
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits    
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 43.7 %

Training

The Common Voice train and validation datasets were used for training.

The script used for training can be found here

Downloads last month
21
Hosted inference API
Automatic Speech Recognition
or
This model can be loaded on the Inference API on-demand.
Evaluation results