File size: 4,139 Bytes
16bc4cf bdfa771 16bc4cf b910b39 cd97752 16bc4cf b910b39 16bc4cf b910b39 16bc4cf be9d7d4 b910b39 16bc4cf 8cd461b 16bc4cf 8cd461b 16bc4cf 8cd461b be9d7d4 16bc4cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-7b
This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-qlora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-qlora) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6928
- Rewards/chosen: -0.0289
- Rewards/rejected: -0.1011
- Rewards/accuracies: 0.3532
- Rewards/margins: 0.0722
- Logps/rejected: -85.5050
- Logps/chosen: -71.7912
- Logits/rejected: -2.1148
- Logits/chosen: -2.1436
- Use Label: 14417.4287
- Pred Label: 5654.5713
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Use Label | Pred Label |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:----------:|:----------:|
| 0.6911 | 0.1 | 100 | 0.6919 | -0.0053 | -0.0356 | 0.3393 | 0.0303 | -78.9541 | -69.4262 | -2.0935 | -2.1210 | 1705.8572 | 150.1429 |
| 0.692 | 0.21 | 200 | 0.6927 | -0.0264 | -0.0695 | 0.3433 | 0.0431 | -82.3504 | -71.5409 | -2.1057 | -2.1268 | 3337.0476 | 622.9524 |
| 0.6924 | 0.31 | 300 | 0.6929 | -0.0369 | -0.0896 | 0.3393 | 0.0527 | -84.3537 | -72.5877 | -2.1933 | -2.2169 | 4863.7300 | 1200.2699 |
| 0.6927 | 0.42 | 400 | 0.6925 | -0.0211 | -0.0804 | 0.3413 | 0.0593 | -83.4364 | -71.0104 | -2.0934 | -2.1190 | 6324.0796 | 1843.9207 |
| 0.6924 | 0.52 | 500 | 0.6929 | -0.0206 | -0.0831 | 0.3433 | 0.0625 | -83.7112 | -70.9618 | -2.1518 | -2.1762 | 7772.7778 | 2499.2222 |
| 0.6929 | 0.63 | 600 | 0.6927 | -0.0452 | -0.1160 | 0.3512 | 0.0708 | -86.9945 | -73.4171 | -2.1125 | -2.1408 | 9198.8574 | 3177.1428 |
| 0.6928 | 0.73 | 700 | 0.6930 | -0.0507 | -0.1231 | 0.3512 | 0.0724 | -87.7077 | -73.9657 | -2.1086 | -2.1372 | 10627.2695 | 3852.7302 |
| 0.6927 | 0.84 | 800 | 0.6928 | -0.0272 | -0.0999 | 0.3552 | 0.0726 | -85.3832 | -71.6247 | -2.1141 | -2.1431 | 12045.5234 | 4538.4761 |
| 0.6929 | 0.94 | 900 | 0.6928 | -0.0288 | -0.1012 | 0.3492 | 0.0723 | -85.5160 | -71.7842 | -2.1139 | -2.1428 | 13461.3809 | 5226.6191 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.38.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |