t-5_base_extractive_512_750

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2627
  • Rouge1: 0.6597
  • Rouge2: 0.3836
  • Rougel: 0.5954
  • Rougelsum: 0.5953
  • Wer: 0.5117

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Wer
No log 0.13 250 1.3741 0.6424 0.3616 0.5756 0.5756 0.5348
1.8339 0.27 500 1.3204 0.6501 0.371 0.5847 0.5847 0.5245
1.8339 0.4 750 1.2968 0.6533 0.3761 0.5886 0.5885 0.5192
1.4045 0.53 1000 1.2796 0.6568 0.3798 0.5919 0.5918 0.5161
1.4045 0.66 1250 1.2723 0.6582 0.382 0.5938 0.5937 0.5134
1.3616 0.8 1500 1.2656 0.659 0.3833 0.5947 0.5947 0.5122
1.3616 0.93 1750 1.2627 0.6597 0.3836 0.5954 0.5953 0.5117

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
105
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for jgibb/t-5_base_extractive_512_750

Base model

google-t5/t5-base
Finetuned
(457)
this model