Whisper Tiny Taiwanese (topline)
This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:
- Loss: 1.0448
- Cer: 20.4492
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1362
- training_steps: 13620
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.6757 | 0.9985 | 681 | 0.6823 | 34.9394 |
0.5051 | 1.9971 | 1362 | 0.6048 | 25.3576 |
0.3472 | 2.9956 | 2043 | 0.5862 | 23.4704 |
0.2461 | 3.9941 | 2724 | 0.6068 | 22.2289 |
0.1633 | 4.9927 | 3405 | 0.6434 | 22.5768 |
0.1086 | 5.9912 | 4086 | 0.7158 | 21.8098 |
0.0723 | 6.9897 | 4767 | 0.7615 | 21.8697 |
0.0478 | 7.9883 | 5448 | 0.8106 | 21.8095 |
0.0333 | 8.9868 | 6129 | 0.8494 | 22.0310 |
0.0244 | 9.9853 | 6810 | 0.8936 | 21.9217 |
0.019 | 10.9839 | 7491 | 0.9116 | 21.9380 |
0.0124 | 11.9824 | 8172 | 0.9579 | 21.3454 |
0.0096 | 12.9809 | 8853 | 0.9779 | 21.6642 |
0.006 | 13.9795 | 9534 | 0.9902 | 21.4863 |
0.004 | 14.9780 | 10215 | 1.0026 | 21.0375 |
0.0021 | 15.9765 | 10896 | 1.0137 | 20.5766 |
0.0017 | 16.9751 | 11577 | 1.0258 | 20.7390 |
0.0015 | 17.9736 | 12258 | 1.0373 | 20.4630 |
0.0019 | 18.9721 | 12939 | 1.0412 | 20.5229 |
0.0013 | 19.9707 | 13620 | 1.0448 | 20.4492 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for jethrowang/whisper-tiny_tat_topline
Base model
openai/whisper-tiny